• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 30
  • 17
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 343
  • 58
  • 52
  • 42
  • 42
  • 39
  • 38
  • 34
  • 34
  • 33
  • 31
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Solar Wind Influences on Properties of the Ionosphere

2013 August 1900 (has links)
The Sun’s corona expands outward, populating the solar system with plasma. This plasma is known as the solar wind. The solar wind carries with it the Sun’s magnetic field, which is also known as the interplanetary magnetic field (IMF). The resulting configuration of the IMF creates a current sheet at solar equatorial latitudes, which the Earth crosses as it orbits the Sun. When the Earth is on one side of the current sheet it is in a sector where the IMF is directed largely away from or toward the Sun. On the other side of the current sheet the IMF is in opposite direction. The crossing of the current sheet is known as a sector boundary crossing (SBC). The solar wind and IMF properties change significantly near the current sheet, and this affects the Earth’s ionosphere. The Super Dual Auroral Radar Network (SuperDARN) high frequency (HF) radar data rates from 2001-2011 were examined using several techniques: a superposed epoch analysis, a fast fourier transform (FFT) analysis, and a cross–correlation analysis. Data from multiple instruments were analyzed in this study. These include the solar wind and IMF data from spacecraft, observations of charged particles precipitating into the Earth’s ionosphere, echoes from ground–based SuperDARN radars, and data from gound–based neutron monitors that detect galactic cosmic rays. Solar wind and IMF properties change significantly across a sector boundary. An increase in the IMF magnitude of about 30% occurs on the day of the SBC, and the IMF returns to pre–crossing values over the next two days. There is a decrease in the solar wind speed of about 15% the day before and the day of the SBC, and the solar wind density doubles at the time of the SBC. The polarity of the SBC does not appear to affect the solar wind and IMF. A peak in the data rate of SuperDARN echoes from both the ionosphere and ground occurs within one day of the SBC, though the variability of these data is quite large. The hemispherical power, which is an estimation of the electron energy flux precipitating into the ionosphere derived from satellite observations, increases following a SBC. Satellite particle data also revealed that the equatorward auroral oval boundary moves equatorward following a SBC. The cosmic ray counts at the Earth’s surface appear to be unaffected by the SBC. The solar wind and ionosphere data sets exhibited strong periodicities, and these were harmonics of the synodic rotational period of the Sun (approximately 27 days). Common periodicities observed were 27 days, 13.5 days, 9 days, 6.75 days and 5.4 days. There was a dominant 9–day periodicity observed in the solar wind and ionospheric data from 2005–2008, but was not observed in the solar 10.7 cm wavelength electromagnetic flux. The 9-day periodicity in the solar wind during this period has been linked to three persistent features on the Sun that produced corotating high–speed streams, or areas of fast solar wind. The parameters whose change did not depend on the polarity of the SBC had periodicities that were half that of the SBCs. From the cross–correlation analysis some relationships between the data sets became evident. For periods of high solar wind speed there were low SuperDARN data rates, and vice versa. The solar wind speed and hemispherical power were found to be well correlated, while the hemispherical power and the SuperDARN scatter occurrence were found to be anticorrelated. The solar wind changes appear to be affecting the state of the ionosphere, likely through particle precipitation. The SuperDARN scatter occurrence has been shown in past studies to be most greatly affected by changes in the electron density profile of the ionosphere, which can be influenced by changes in particle precipitation. These results demonstrate a link between the solar wind and the state of the ionosphere.
212

Studies of the IMF and dayside reconnection-driven convection seen by PolarDARN

Yan, Xi 01 April 2010 (has links)
The original objectives of this thesis were to use the new PolarDARN radars to study the convection patterns at high latitudes and to attempt to explain them in terms of reconnection. Because the IMF is important in reconnection, studies of the Interplanetary Magnetic Field (IMF) components Bx, By and Bz were done. The study showed that <|Bz|> was lower by 21.5% than <|By|> from Jan. 2006 to Dec. 2008, so By was expected to play an important role in reconnection. The IMF, spiral angle, and the amount of warping of the solar magnetic field in interplanetary space decreased slightly during this 36-month period. The decrease in IMF was a more sensitive indicator of the solar minimum than the decrease in the 10.7 cm solar microwave flux.<p> A solar magnetic sector boundary study from the Jan 1, 2007 Dec 31, 2008 interval showed the occurrence of four or two sectors in a synodic solar rotation cycle. A sector boundary crossing frequently takes place in less than 3 hours. The transition from four sectors to two sectors is surprisingly smooth, in that no interruption in the 27-day synodic period occurs. A superposed epoch analysis of solar wind speed near sector boundary crossings showed a speed minimum about half a day before the crossing, and a maximum about two days after the crossing. The standard deviation reached a minimum at about the same time as the velocity. The sector boundary study also showed that, since Dec. 2007, there were six roughly 27-day synodic solar rotation cycles near spring equinox when away field dominated, and that the following seven 27-day cycles close to the autumnal equinox were dominated by toward field. This is consistent with the quasi-sinusoidal annual magnetic sector polarity oscillations that occur for about three years during solar minimum. These oscillations are due to the mainly dipolar magnetic field which is roughly aligned with the Suns axis, tilted 7.25° from the normal to the ecliptic plane. The three-year oscillation for the present minimum between Solar Cycles 23 and 24 appeared to begin in Dec. 2007. For the past four solar minima, an El Nino event has occurred during the last of the three oscillations, and the El Nino and sinusoidal magnetic oscillation ended together. The new solar cycle began about 6 months before that. During the past eight years, a new 3D topological null-separator formulation of magnetic reconnection and its effect on convection has been led by Dr. M. Watanabe in ISAS at the University of Saskatchewan. This formulation includes two types of interchange reconnection (Russell and Tanaka) as well as the traditional Dungey reconnection. For conditions when the IMF clock angle was within 30° of a Bz+ dominant convection, the new reconnection model shows that the convection can be driven strictly by the two types of interchange reconnection. The model predicts the existence of a reciprocal cell on closed field lines and an interchange merging cell surrounding an interior lobe cell. The construction of the PolarDARN radars at Rankin Inlet and Inuvik, completed in December, 2007, allowed polar cap convection to be measured for predominantly Bz+ conditions. The existence of the two predicted features was confirmed. This also required that satellite data be analyzed to determine the location of the open-closed-field-line-boundary (OCFLB). Several PolarDARN studies are represented to show convection for different IMF clock angles and seasons.
213

Midlatitude D Region Variations Measured from Broadband Radio Atmospherics

Han, Feng January 2011 (has links)
<p>The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (<italic>D</italic> region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the <italic>D</italic> region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of <italic>D</italic> region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code.</p><p>In order to understand the time scales, magnitudes and sources for the midlatitude nighttime <italic>D</italic> region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the <italic>D</italic> region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements.</p><p>Based on sferic data similar to those for nighttime, we also measured the daytime <italic>D</italic> region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime <italic>D</italic> region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5-4 &Aring), rather than the long (wavelength 1-8 &Aring) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large.</p><p>By applying the nighttime and daytime measurement techniques, we also derived the <italic>D</italic> region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.</p> / Dissertation
214

Development Of A Matlab Based Software Package For Ionosphere Modeling

Nohutcu, Metin 01 September 2009 (has links) (PDF)
Modeling of the ionosphere has been a highly interesting subject within the scientific community due to its effects on the propagation of electromagnetic waves. The development of the Global Positioning System (GPS) and creation of extensive ground-based GPS networks started a new period in observation of the ionosphere, which resulted in several studies on GPS-based modeling of the ionosphere. However, software studies on the subject that are open to the scientific community have not progressed in a similar manner and the options for the research community to reach ionospheric modeling results are still limited. Being aware of this need, a new MATLAB&reg / based ionosphere modeling software, i.e. TECmapper is developed within the study. The software uses three different algorithms for the modeling of the Vertical Total Electron Content (VTEC) of the ionosphere, namely, 2D B-spline, 3D B-spline and spherical harmonic models. The study includes modifications for the original forms of the B-spline and the spherical harmonic approaches. In order to decrease the effect of outliers in the data a robust regression algorithm is utilized as an alternative to the least squares estimation. Besides, two regularization methods are employed to stabilize the ill-conditioned problems in parameter estimation stage. The software and models are tested on a real data set from ground-based GPS receivers over Turkey. Results indicate that the B-spline models are more successful for the local or regional modeling of the VTEC. However, spherical harmonics should be preferred for global applications since the B-spline approach is based on Euclidean theory.
215

Ionospheric effects on synthetic aperture radar imaging /

Liu, Jun, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 100-105).
216

Detection of atmospheric water vapour using the Global Positioning System / A.Z.A. Combrink

Combrink, Adriaan Zacharias Albertus January 2003 (has links)
The Global Positioning System (GPS) has been used for more than a decade for the accurate determination of position on the earth's surface, as well as navigation. The system consists of approximately thirty satellites, managed by the US Department of Defense, orbiting at an altitude of 20 200 kilometres, as well as thousands of stationary ground-based and mobile receivers. It has become apparent from numerous studies that the delay of GPS signals in the atmosphere can also be used to study the amosphere, particularly to determine the precipitable water vapour (PWV) content of the troposphere and the total electron content (TEC) of the ionosphere. This dissertation gives an overview of the mechanisms that contribute to the delay of radio signals between satellites and receivers. The dissertation then focuses on software developed at the Hartebeesthoek Radio Astronomy Observatory's (HartRAO's) Space Geodesy Programme to estimate tropospheric delays (from which PWV is calculated) in near real-time. In addition an application of this technique, namely the improvement of tropospheric delay models used to process satellite laser ranging (SLR) data, is investigated. The dissertation concludes with a discussion of opportunities for future work. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2004.
217

Satellite observations of auroral acceleration processes

Eliasson, Lars January 1994 (has links)
Measurements with satellite and sounding rocket borne instruments contain important information on remote and local processes in regions containing matter in the plasma state. The characteristic features of the particle distributions can be used to explain the morphology and dynamics of the different plasma populations. Charged particles are lost from a region due to precipitation into the atmosphere, charge exchange processes, or convection to open magnetic field lines. The sources of the Earth’s magnetospheric plasma are mainly ionization and extraction of upper atmosphere constituents, and entry of solar wind plasma. The intensity and distribution of auroral precipitation is controlled in part by the conditions of the interplanetary magnetic field causing different levels of auroral activity. Acceleration of electrons and positive ions along auroral field lines play an important role in magnetospheric physics. Electric fields that are quasi-steady during particle transit times, as well as fluctuating fields, are important for our understanding of the behaviour of the plasma in the auroral region. High-resolution data from the Swedish Viking and the Swedish/German Freja satellites have increased our knowledge considerably about the interaction processes between different particle populations and between particles and wave fields. This thesis describes acceleration processes influencing both ions and electrons and is based on in-situ measurements in the auroral acceleration/heating region, with special emphasis on; processes at very high latitudes, the role of fluctuating electric fields in producing so called electron conics, and positive ion heating transverse to the geomagnetic field lines. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 6 uppsatser.</p> / digitalisering@umu.se
218

Detection of atmospheric water vapour using the Global Positioning System / A.Z.A. Combrink

Combrink, Adriaan Zacharias Albertus January 2003 (has links)
The Global Positioning System (GPS) has been used for more than a decade for the accurate determination of position on the earth's surface, as well as navigation. The system consists of approximately thirty satellites, managed by the US Department of Defense, orbiting at an altitude of 20 200 kilometres, as well as thousands of stationary ground-based and mobile receivers. It has become apparent from numerous studies that the delay of GPS signals in the atmosphere can also be used to study the amosphere, particularly to determine the precipitable water vapour (PWV) content of the troposphere and the total electron content (TEC) of the ionosphere. This dissertation gives an overview of the mechanisms that contribute to the delay of radio signals between satellites and receivers. The dissertation then focuses on software developed at the Hartebeesthoek Radio Astronomy Observatory's (HartRAO's) Space Geodesy Programme to estimate tropospheric delays (from which PWV is calculated) in near real-time. In addition an application of this technique, namely the improvement of tropospheric delay models used to process satellite laser ranging (SLR) data, is investigated. The dissertation concludes with a discussion of opportunities for future work. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2004.
219

Planetary Wave Coupling between Stratosphere and Ionosphere by Gravity Wave Modulation

Hoffmann, Peter 05 August 2011 (has links) (PDF)
The ionosphere-thermosphere can be considered to a certain degree as a system, which is externally-driven by the extreme-ultraviolet solar radiation. The main components in the regular variation are connected to the solar cycle, solar rotation and the diurnal cycle. However, anomalies and periodicities of several days, which cannot be related to changes in the solar activity at all times, were detected in ionospheric parameters. It is assumed that the total variation in the ionosphere is partly forced by waves coming from below. This thesis provides a clearer picture of the seasonal changes of wave phenomena observed in the ionosphere and its possible relation to lower atmospheric structures. Since such global disturbances in the middle atmosphere are termed as planetary waves (PW), such features in the ionosphere are declared as planetary wave type oscillations (PWTO), although a direct connection is excluded.Northern hemispheric maps of the Total Electron Content (TEC) derived from GPS-signals that are currently used for monitoring the ionospheric F-region in relation to space weather provide a basis for investigating PWTO applying space-time analysis methods to separate stationary and traveling wave components from the data. Compared to analyses of PW obtained by regular stratospheric reanalyses the seasonal behavior and possible coexisting wave activities during the considered period of time (2002-2008) are presented. Such a climatological consideration has revealed that recurring events in the course of the solar cycle are rare, but it seems that the westward propagating quasi 16-day wave with zonal wavenumber 1, analysed from stratospheric MetO reanalyses, and the ionosphere are indirectly coupled. Generally, the correspondence of other components are restricted around the solar maximum 2002-2005. There are some suggestions, how the middle and upper atmosphere are connected by PW. Sounding of the middle atmosphere by remote sensing techniques from satellites (e.g. SABER on TIMED) deliver a suitable basis to investigate the coupling by the modulation of gravity waves (GW). By calculating the potential energy for a certain wave spectrum, characterized by vertical wavelength shorter than 6 km, and determining proxies of traveling waves permits to investigate a possible mechanism. The results reveal that GW partly penetrate the lower thermosphere carrying a modulation by PW. In some cases, especially during the first three winter, near solar maximum, stratospheric PW show a good correlation to indirect signals in the lower thermosphere and to PWTO in the ionospheric F-region near 300 km.
220

A feasibility study into total electron content prediction using neural networks /

Habarulema, John Bosco. January 2007 (has links)
Thesis (M.Sc. (Physics & Electronics)) - Rhodes University, 2008. / A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science.

Page generated in 0.0726 seconds