251 |
Solar cycle effects on GNSS-derived ionospheric total electron content observed over Southern AfricaMoeketsi, Daniel Mojalefa January 2008 (has links)
The South African Global Navigation Satellite System (GNSS) network of dual frequency receivers provide an opportunity to investigate solar cycle effects on ionospheric Total Electron Content (TEC) over the South Africa region by taking advantage of the dispersive nature of the ionospheric medium. For this task, the global University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was adopted, modified and applied to compute TEC using data from the southern African GNSS Network. TEC values were compared with CODE International GNSS services TEC predictions and Ionosonde-derived TEC (ITEC) measurements to test and validate the UNB-IMT results over South Africa. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show pronounced seasonal variations with high TEC values around equinoxes for a year near solar maximum and less pronounced around solar minimum. Signature TEC depletions and enhanced spikes were prevalently evident around equinoxes, particularly for a year near solar maximum. These observations were investigated and further discussed with an analysis of the midday Disturbance Storm Time (DST) index of geomagnetic activity. The residual GTEC – ITEC corresponding to plasmaspheric electron content and equivalent ionospheric foF2 and total slab thickness parameters were computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for ionospheric research over South Africa. The UNB-IMT algorithm was applied to investigate TEC variability during different epochs of solar cycle 23. The results were investigated and further discussed by analyzing the GOES 8 and 10 satellites X-ray flux (0.1 – 0.8 nm) and SOHO Solar Extreme Ultraviolet Monitor higher resolution data. Comparison of UNB-IMT TEC derived from collocated HRAO and HARB GNSS receivers was undertaken for the solar X17 and X9 flare events, which occurred on day 301, 2003 and day 339, 2006. It was found that there exist considerable TEC differences between the two collocated receivers with some evidence of solar cycle dependence. Furthermore, the daytime UNB TEC compared with the International Reference Ionosphere 2001 predicted TEC found both models to show a good agreement. The UNB-IMT TEC was further applied to investigate the capabilities of geodetic Very Long Baseline Interferometry (VLBI) derived TEC using the Vienna TEC Model for space weather monitoring over HartRAO during the CONT02 and CONT05 campaigns conducted during the years 2002 (near solar maximum) and 005 (near solar minimum). The results verified the use of geodetic VLBI as one of the possible instruments for monitoring space weather impacts on the ionosphere over South Africa.
|
252 |
Studies in ionospheric ray tracingLambert, Sheridan 21 October 2013 (has links)
The use of ray tracing in the analysis of certain daytime ionograms recorded at Grahamstown is discussed in this thesis. A computer program has been modified and used to trace rays in the frequency range 1 - 30 MHz. Vertical, short distance oblique, and long distance oblique ionograms have been synthesized from the results and compared with experimental ionograms for Grahamstown, the Alice - Grahamstown transmission path (64 km), and the SANAE - Grahamstown transmission path (4470 km) respectively. Ray paths have been calculated and related in detail to the models of the ionosphere and geomagnetic field. The main features of the vertical and short distance oblique ionograms can, in general, be reproduced using spherically stratified ionosphere models with electron density profiles derived from vertical ionograms. A suitable model for the geomagnetic field is a tilted dipole equivalent to the actual field at Grahamstown. The two-hop mode is shown to be, usually, the lowest on the long distance oblique records. The ionosphere model is the principal limiting factor in reproducing such ionograms, and the most satisfactory results have been those obtained with a model in which electron density is assumed to vary linearly with latitude between the profiles at SANAE and Grahamstown. The promising results obtained by ray tracing with normal ionospheric conditions indicate that the method has further possibilities which could usefully be explored. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
|
253 |
Etude expérimentale de l’ionosphère de moyenne et basse latitude et de ses instabilités au moyen d’observations in-situ par DEMETER / Exprimental study of mid and low latitude ionosphere and its instabilites by means of in-situ observations from DEMETERNguyen, Chien-Thang 25 September 2015 (has links)
L’objectif de la thèse était d’analyser deux types de perturbations de l’ionosphère supérieure observées sur les mesures de plasma fournies par le satellite DEMETER.Les premières sont des Perturbations Ionosphériques Itinérantes de moyenne échelle engendrées par l’action sur le plasma des ondes de gravité atmosphériques qui se propagent jusqu’à haute altitude. Elles prennent la forme de variations quasi-périodiques de densité du plasma qui peuvent atteindre des amplitudes considérables et sont plus fréquentes dans l’hémisphère Sud avec un maximum au-dessus de l’Océan Pacifique. Elles peuvent modifier l’électrodynamique de l’ionosphère et amplifier le champ électrique d’origine dynamo.Les secondes sont observées dans l’ionosphère équatoriale comme des augmentations à grande échelle de la densité du plasma sous la forme de plateaux. En fonction des conditions d’activité magnétique, des dépressions de densité à moyenne échelle peuvent apparaitre sur les plateaux et conduire à la formation des bulles de plasma équatoriales. / This thesis aims at analyzing two kinds of ionospheric disturbances observed on plasma measurements on-board the DEMETER satellite.The first events are Mid-Scale Traveling Ionospheric Disturbances that develop through the interaction between atmospheric gravity waves and the ionospheric plasma. They are observed as quasi-periodic variations of the plasma density that may reach very large amplitudes and are more frequently observed in the Southern hemisphere with a maximum over the Pacific Ocean. These MSTID may strongly modify the electrodynamics of the mid latitude ionosphere and form structures where the dynamo electric field is significantly enhanced.The second events are detected in the equatorial ionosphere as large scale enhancements of the plasma density under the form of plateau. Depending on the level of magnetic activity these large scale structures may be modified by mid-scale density depletions that, eventually, get instable and led to the formation of depleted plasma bubbles.
|
254 |
Incoherent Scattering of Twisted Radar Beams from the IonosphereLannér, Viktor January 2017 (has links)
In the search for natural orbital angular momentum (OAM) effects, some of the first incoherent scatter experiments with twisted radar beams during aurora were conducted at Poker Flat Incoherent Scatter Radar (PFISR), Alaska, USA, in October 2012. Experimental data of scatter from beam configurations with opposite twists were investigated. By the use of hypothesis tests in combination with Monte Carlo simulations together with traditional estimations of the mean and confidence interval, asymmetries between scatter of radar beams with opposite twists were identified for an integration time of at least 30 minutes. Asymmetries were detected in the internal radar noise too, but not necessarily with the same signs as for the asymmetries from the ionospheric signals. The asymmetries identified could be due to amplified noise for signals coming from intense aurora or perhaps the rectangular-shaped antenna array used at PFISR. These two possible causes need to be ruled out before suggesting that the asymmetries identified are an outcome of OAM effects present in the ionosphere.
|
255 |
Modeling the Martian ionosphereMatta, Majd Mayyasi 22 January 2016 (has links)
The accessibility of the Martian atmosphere to spacecraft provides an opportunity to study an ionosphere that differs from our own. Yet, despite the half century of measurements made at Mars, the current state of the neutral atmosphere and its embedded plasma (ionosphere) remains largely uncharacterized. In situ measurements of the neutral and ionized constituents versus height exist only from the two Viking Landers from the 1970s. Subsequent satellite and remote sensing data offer sparse global coverage of the ionosphere. Thermal characteristics of the plasma environment are not well understood. Patchy crustal magnetic fields interact with the Martian plasma in a way that has not been fully studied. Hence, investigating the coupled compositional, thermal and crustal-field-affected properties of the ionosphere can provide insight into comparative systems at Earth and other planets, as well as to atypical processes such as the solar wind interaction with topside ionospheric plasma and associated pathways to escape.
Ionospheric models are fundamental tools that advance our understanding of complex plasma systems. A pre-existing one-dimensional model of the Martian ionosphere has been upgraded to include more comprehensive chemistry and transport physics. This new BU Mars Ionosphere Model has been used to study the composition, thermal structure and dynamics of the Martian ionosphere. Specifically: the sensitivity of the abundance of ions to neutral atmospheric composition has been quantified, diurnal patterns of ion and electron temperatures have been derived self-consistently using supra-thermal electron heating rates, and the behavior of ionospheric plasma in crustal field regions was simulated by constructing a two-dimensional ionospheric model. Results from these studies were compared with measurements and show that (1) ion composition at Mars is highly sensitive to the abundance of neutral molecular and atomic hydrogen, (2) lighter ions heat up more efficiently than heavier ones and provide additional heating sources for cooler plasma, and (3) crustal field morphology affects plasma dynamics and structure at Mars in a way that is consistent with observations. Finally, model predictions of ion composition and plasma temperatures are provided for observations to be made by several instruments on board the upcoming 2013 MAVEN orbiter.
|
256 |
Delayed response of the global total electron content to solar EUV variationsJacobi, Christoph, Jakowski, Norbert, Schmidtke, Gerhard, Woods, Thomas N. January 2016 (has links)
The ionospheric response to solar extreme ultraviolet (EUV) variability during 2011–2014 is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar EUV spectra. The daily proxies are compared with global mean total electron content (TEC) computed from global TEC maps derived from Global Navigation Satellite System dual frequency measurements. They describe about 74% of the intra-seasonal TEC variability. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
|
257 |
Studium elektromagnetických vln generovaných bleskovými výboji v širokém pásmu frekvencí / Investigation of lightning-generated elecromagnetic waves in a broad frequency rangeFišer, Jiří January 2011 (has links)
In this work I present a study dedicated to the penetration of whistler- mode waves to the ionosphere. An algorithm of automatic detection of whist- lers in spectrograms computed from the data measured on the DEMETER sa- tellite is described. A method of causative lightning detected by the EUCLID lightning detection network assignment to a detected whistlers is described. Results of statistical study dedicated to relationship between the detected whistlers and assigned causative lightning. Based on the proccessing of data from 364 passes of the DEMETER satellite over monitored area is shown, that mean whistler amplitude decreases with distance between the causative lightning, increses with causative lightning current and in the evening is ap- proximately three times higher than in the morning. A study dedicated to subprotonospheric whistlers is presented. We found, that subprotonospheric whistler causative lightnings currents are very high compared to that of usual 0+ whistlers.
|
258 |
Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow MorphologyBrasher, William Ernest, 1939- 12 1900 (has links)
The purpose of this study is two-fold. The first is to determine the dependence of the molecular ion profiles on the various ionospheric and atmospheric parameters that affect their distributions. The second is to demonstrate the correlation of specific ionospheric parameters with 6300 Å nightglow intensity during periods of magnetically quiet and disturbed conditions.
|
259 |
Interannual variability of the quasi two-day wave over Central Europe (52°N, 15°E)Jacobi, Christoph, Kürschner, Dierk 04 April 2017 (has links)
Using the spaced receiver method in the low-frequency (LF) range, lower E-region ionospheric drifts are measured at Collm Observatory, Germany since several decades. These drifts are interpreted as upper mesospheric winds at the reflection height of the used amplitude modulated LF radio waves, the latter being measured since 1983 using travel time differences between the ground wave and the ionospherically reflected sky wave within a small sideband range near 1.8 kHz above and below the carrier frequency. One regular feature of midlatitude upper mesosphere winds is the quasi twoday wave (QTDW), known as a wavenumber 3 or 4 wave in the middle atmosphere, usually occurring as one or more bursts during the summer season at midlatitudes. The OTDW bursts, as measured in LF winds, shows substantial decadal and interannual variability. Comparison with the background winds show that the onset of QDTW bursts is found near maximum values of the vertical wind shear, and maximum QTDW amplitudes are measured, on average, about one week after the maximum wind shear. This supports the theory that the QTDW is forced by instability of the summer mesospheric wind jet. / Am Observatorium Collm werden seit mehreren Jahrzehnten Langwellenwindmessungen in der unteren ionosphärischen E-Schicht durchgeführt. Die zugehörige Reflexionshöhe wird, auf der Basis von Laufzeitdifferenzmessungen zwischen der Raum- und Bodenwelle, seit 1983 ebenfalls registriert. Eines der regelmäßig beobachteten Phänomene ist die quasi 2-Tage-Welle, die als eine planetare Welle der Wellenzahl 3 oder 4 bekannt ist. Diese Welle erscheint in mittleren Breiten in einem oder mehreren Schüben im Sommer. Nach den Messungen am Collm besitzt die Welle eine deutliche Variabilität von Jahr zu Jahr. Vergleiche mit dem zonalen Grundwind zeigen, dass das Auftreten von Maxima der 2-Tage-Welle in vielen Fällen mit erhöhter vertikaler Windscherung in Verbindung steht, so dass im langzeitlichen Mittel maximale Wellenamplituden einige Tage nach dem Auftreten maximaler Windscherung zu finden sind. Dies unterstützt die These, dass die quasi 2-Tage-Welle durch barokline Instabilität des sommerlichen Mesosphärenjets angeregt wird.
|
260 |
Response of the ionospheric total electron content to stratospheric normal modesHoffmann, Peter, Jacobi, Christoph 04 April 2017 (has links)
Globale Karten des totalen Elektronengehaltes (TEC) der Ionosphäre werden nach Signalen planetarer Wellenaktivität aus der Stratosphäre im Bereich der mittleren Breiten (ca. 52.5° N) untersucht, um eine Abschätzung über die vertikale Kopplung durch planetare Wellen (PW) zu erhalten. Die Variabilität der Ionosphäre wird operationell durch das DLR Neustrelitz erfasst. Seit 2002 werden zu diesem Zwecke hemisphärische TEC Karten erstellt, die eine Analyse PW typischer Oszillationen in der Ionosphäre ermöglichen. Die verwendete Methode zur Analyse separiert Wellen nach ihrer zonalen Wellenzahl, Periode und Ausbreitungsrichtung. In einer vorherigen Fallstudie vom Herbst 2004 wurde u.a. die quasi 6-Tage Welle (m2w) im mittleren Spektrum für das Geopotential in 1hPa (Stratosphäre) als auch den
ionosphärischen TEC beobachtet. Die aktuellen Resultate geben Hinweise für ein gleichzeitiges Auftreten dieserWelle mit einer quasi 6-Tage Oszillation in der Mesopausenregion. Jedoch im Vergleich zur Stratosphäre scheinen die Signaturen verschoben und etwas modifiziert. / The response of stratospheric planetary wave (PW) activity over the higher middle latitudes (ca. 52.5° N) in global gridded ionospheric data of the total electron content (TEC) are investigated to estimate the vertical coupling by PW. The monitoring of ionospheric variability is regularly operated by DLR Neustrelitz since 2002 producing TEC maps covering the northern hemisphere. This data base is considered for comparing simultaneous observations of wave activity in both stratosphere and ionosphere. The analysis technique of planetary wave type oscillations (PWTO) is carried out by separating waves into their zonal wavenumber, period and travelling direction. A previous case study of autumn 2004 has shown that among other things the quasi 6-day wave (m2w) is visible in the mean spectrum of stratospheric geopotential height at 1 hPa pressure level and of ionospheric TEC data. The actual results give hints for a simultaneous occurrence of this wave type with a quasi 6-day oscillation in the mesopause region. But in comparison to the stratosphere, the wave signatures seem to be somewhat schifted and modified.
|
Page generated in 0.0708 seconds