• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 30
  • 17
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 343
  • 58
  • 52
  • 42
  • 42
  • 39
  • 38
  • 34
  • 34
  • 33
  • 31
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileira

Matsuoka, Marcelo Tomio January 2007 (has links)
Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC – Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. Esta pesquisa tem como principal meta o estudo do comportamento do erro devido à ionosfera na região brasileira em diferentes situações ionosféricas com base em valores de TEC advindos das estações GPS da RBMC e da rede IGS da América do Sul. Outro objetivo é avaliar a performance e as limitações do Mapa Global da Ionosfera do IGS aplicado no posicionamento por ponto na região brasileira. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo – Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. The goal of this research is to study the ionospheric error behavior in the Brazilian region, considering different ionosphere situations, using TEC values computed by GPS data from RBMC and IGS network. Other goal is to evaluate the performance and limitations of Global Ionospheric Map of IGS applied in the GPS point positioning in Brazil.
332

Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileira

Matsuoka, Marcelo Tomio January 2007 (has links)
Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC – Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. Esta pesquisa tem como principal meta o estudo do comportamento do erro devido à ionosfera na região brasileira em diferentes situações ionosféricas com base em valores de TEC advindos das estações GPS da RBMC e da rede IGS da América do Sul. Outro objetivo é avaliar a performance e as limitações do Mapa Global da Ionosfera do IGS aplicado no posicionamento por ponto na região brasileira. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo – Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. The goal of this research is to study the ionospheric error behavior in the Brazilian region, considering different ionosphere situations, using TEC values computed by GPS data from RBMC and IGS network. Other goal is to evaluate the performance and limitations of Global Ionospheric Map of IGS applied in the GPS point positioning in Brazil.
333

Contribuição ao estudo de distúrbios ionosféricos utilizando a técnica de VLF

Cruz, Edith Liliana Macotela 09 March 2015 (has links)
Made available in DSpace on 2016-03-15T19:35:50Z (GMT). No. of bitstreams: 1 EDITH LILIANA MACOTELA.pdf: 4190613 bytes, checksum: 95f5d6f4988fd94b74e81390b34799d8 (MD5) Previous issue date: 2015-03-09 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The Earth-Low ionosphere system behaves as a waveguide for the propagation of radio waves of very low frequency (VLF). If in this system the electrical conductivity of its boundaries is perturbed, the propagation of the VLF waves will also be perturbed. There is a diversity of transient physical phenomena that are able to alter significantly the electrical conductivity of the lower ionosphere. The disturbance in this region is able to produce phase and amplitude variations with respect to a quiescent level of these waves. The aim of the present work is to study the response of the lower ionosphere to phenomena originated in the Earth, our solar system or even much farther away. For this purpose, VLF data obtained by SAVNET (South American VLF Network) during the solar cycle 24 was used. It was found that the correction by both the length of the path illuminated by the flare and the reference height coefficient allows normalizing the effect of ionospheric disturbances observed in the VLF phase signals that propagated along trajectories with a north-south or west-east direction, separately. The lower limit of detection for disturbances caused by the X-ray radiation excess is 1.8×10−9 Jm-2 and 2.6×10−7 Jm-2 for the nighttime and daytime lower ionosphere, respectively. Changes in the periodicities of the VLF signal, in the infrasonic band, were observed between 6 and 14 days prior to the seismic events, of magnitude 7, occurred in Haiti in 2010 and in Peru in 2011. Increases in the periodicities of the order of few minutes were observed when the shadow of the total solar eclipse of 2010 was moving on the Earth. Due to the solar eclipse the ionospheric reference height increased in ~3 km and the electron density decreased in 60 % of its quiescent level. Finally, it was found that the effective recombination coefficient, for 80 km height, was 1.1×10−5 cm-3s-1 during the time of the eclipse, which is an intermediate value between the diurnal and nocturnal conditions. / O sistema Terra-baixa ionosfera se comporta como um guia de onda para a propagação de ondas de rádio de frequências muito baixa (VLF). Se neste sistema a condutividade elétrica das fronteiras é perturbada, a propagação da onda é também perturbada. Existe uma variedade de fenômenos físicos transientes que alteram significativamente a condutividade elétrica da baixa ionosfera. Essas alterações são observadas como variações da fase e/ou amplitude com respeito ao nível quiescente. O presente trabalho tem como finalidade estudar a resposta da baixa ionosfera a fenômenos que produzidos na Terra, no sistema solar e até aqueles produzidos muito além do sistema solar. Com esse fim foram utilizados dados de VLF de fase e de amplitude fornecidos pela rede SAVNET (South America VLF NETwork) para o ciclo solar 24. Foi encontrado que a correção pelo fator de distância iluminada e o coeficiente de altura de referência permitem normalizar o efeito do distúrbio ionosférico a partir do sinal de VLF propagado em trajetos com direção de propagação norte-sul ou oeste-leste. O limiar de detecção das perturbações causadas pelo excesso na incidência dos raios-X é 1,8×10−9 Jm-2 para a ionosfera noturna e 2,6×10−7 Jm-2 para a ionosfera diurna. Perturbações ionosféricas observadas como alterações nos períodos do sinal de VLF, na faixa de infrassom, foram observadas entre 6 e 14 dias antes dos eventos sísmicos de magnitude 7 acontecidos no Haiti no ano 2010 e no Peru no ano 2011. Alterações nas periodicidades, da ordem de dezenas de minutos, foram observadas quando a sombra do eclipse solar total de 2010 se deslocava sobre a Terra. Devido ao eclipse, a altura de referência da ionosfera aumentou em ~3 km e a densidade eletrônica diminuiu em 60% com respeito do nível quiescente. Finalmente, foi encontrado que o coeficiente de recombinação efetiva, para o tempo do eclipse e para uma altura de 80 km, foi de 1,1×10−5 cm-3s-1, que é um valor intermediário entre as condições diurnas e noturnas.
334

Optimizing MIDAS III over South Africa

Giday, Nigussie Mezgebe January 2014 (has links)
In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
335

Validation of high frequency propagation prediction models over Africa

Tshisaphungo, Mpho January 2010 (has links)
The ionosphere is an important factor in high frequency (HF) radio propagation providing an opportunity to study ionospheric variability as well as the space weather conditions under which HF communication can take place. This thesis presents the validation of HF propagation conditions for the Ionospheric Communication Enhanced Profile Analysis and Circuit (ICEPAC) and Advanced Stand Alone Prediction System (ASAPS) models over Africa by comparing predictions with the measured data obtained from the International Beacon Project (IBP). Since these models were not developed using information on the African region, a more accurate HF propagation prediction tool is required. Two IBP transmitter stations are considered, Ruaraka, Kenya (1.24°S, 36.88°E) and Pretoria, South Africa (25.45°S, 28.10°E) with one beacon receiver station located in Hermanus, South Africa (34.27°S, 19.l2°E). The potential of these models in terms of HF propagation conditions is illustrated. An attempt to draw conclusions for future improvement of the models is also presented. Results show a low prediction accuracy for both ICEPAC and ASAPS models, although ICEPAC provided more accurate predictions for daily HF propagation conditions. This thesis suggests that the development of a new HF propagation prediction tool for the African region or the modification of one of the existing models to accommodate the African region, taking into account the importance of the African ionospheric region, should be considered as an option to ensure more accurate HF Propagation predictions over this region.
336

Ionospheric response to solar variability during solar cycles 23 and 24

Codrescu, Mihail, Vaishnav, Rajesh, Jacobi, Christoph, Berdermann, Jens, Schmölter, E. 15 March 2021 (has links)
The ionospheric variability and its complexity is strongly dependent on continuous varying intense solar extreme ultraviolet (EUV) and UV radiations. We investigate the ionospheric response to the solar activity variations during the solar cycle (SC) 23 (1999-2008) and 24 (2009-2017) by using the F10.7 index, and Total Electron Content (TEC) maps provided by the international GNSS service (IGS). Wavelet cross-correlation method is used to evaluate the correlation between F10.7 and the global mean TEC. The maximum correlation is observed at the solar rotation time scale (16-32 days). There is a significant difference in the correlation at the time scale of 32-64 days. During SC 23, the correlation is stronger than during SC 24. This is probably due to the longer lifetime of active regions during SC 23. The wavelet variance estimation method suggests that the variance during SC 23 is more significant than during SC 24. Furthermore, the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model was used to reproduce the ionospheric delay of about 1-2 days observed in the IGS TEC observations. A strong correlation was modelled as well as observed during a high solar activity year (2013) as compared to low a solar activity year (2008). / Die ionosphärische Variabilität ist stark abhängig von der kontinuierlich variierenden intensiven solaren extrem ultravioletten (EUV) und UV-Strahlung. Wir untersuchen die ionosphärische Reaktion auf Variationen der Sonnenaktivität während der Sonnenzyklen (SC) 23 (1999-2008) und 24 (2009-2017) mit Hilfe des F10.7-Radioflussindexes und TEC (Gesamtelektronengehalt, Total Electron Content) -Karten, die vom internationalen GNSS-Dienst (IGS) bereitgestellt werden. Wavelet-Kreuzkorrelation wird verwendet, um die Korrelation zwischen F10.7 und global gemitteltem TEC zu bestimmen. Die maximale Korrelation wird auf der Zeitskala der Sonnenrotation (16-32 Tage) beobachtet. Es gibt einen signifikanten Unterschied in der Korrelation auf der Zeitskala von 32 bis 64 Tagen. Während des SC 23 ist die Korrelation stärker als während SC 24. Dies ist auf die längere Lebensdauer der aktiven Regionen zurückzuführen. Das Wavelet-Varianz-Schätzverfahren legt nahe, dass die Varianz beim SC 23 mehr von Bedeutung ist, als während SC 24. Des Weiteren wurde das gekoppelte Thermosphäre-Ionosphäre-Plasmasphäre-Elektrodynamik (CTIPe) Modell verwendet, um die ionosphärische Verzögerung von 1-2 Tagen zu reproduzieren. Eine starke Korrelation wurde bei hoher Sonnenaktivität (2013) im Gegensatz zu geringer Sonnenaktivität (2008) simuliert und auch beobachtet.
337

Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

Brückner, Marlen, Lonardi, Michael, Ehrlich, André, Wendisch, Manfred, Jäkel, Evelyn, Schäfer, Michael, Quaas, Johannes, Kalesse, Heike 12 April 2021 (has links)
The thermosphere-ionosphere regions are mainly controlled by the solar, but also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the 25-26 August 2018 intense geomagnetic storm is investigated using the International GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm, the minimum disturbance storm time (Dst) index reached -174 nT. We use observations and model simulations to analyse the ionospheric response during the initial phase and the main phase of the magnetic storm. A significant difference between storm day and quiet day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest that the CTIPe model can capture the ionospheric variations during storms. / Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten (Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174 nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische Reaktion während der Anfangsphase und der Hauptphase des magnetischen Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms. Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics (CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die ionosphärischen Schwankungen während eines Sturms erfassen kann.
338

Automated Detection and Analysis of Low Latitude Nightside Equatorial Plasma Bubbles

Adkins, Vincent James 21 June 2024 (has links)
Equatorial plasma bubbles (EPBs) are large structures consisting of depleted plasma that generally form on the nightside of Earth's ionosphere along magnetic field lines in the upper thermosphere/ionosphere. While referred to as `bubbles', EPBs tend to be longer along magnetic latitudes and narrower along magnetic longitudes which are on the order of thousands and hundreds of kilometers, respectively. EPBs are a well documented occurrence with observations spanning many decades. As such, much is known about their general behavior, seasonal variation of occurrences, increasing/decreasing occurrences with increasing/decreasing solar activity, and their ability to interact and interfere with radio waves such as GPS. This dissertation expands on this understanding by focusing on the detection and tracking of EPBs in the upper thermosphere/ionosphere along equatorial to low latitudes. To do this, far ultraviolet (FUV) emission observations of the recombination of O$^+$ with electrons via the Global-Scale Observations of the Limb and Disk (GOLD) mission are analyzed. GOLD provides consistent data from geostationary orbit with the eastern region of the Americas, Atlantic, and western Africa. The optical data can be used to pick out gradients in brightness along the 135.6 nm wavelength which correlate with the location of EPBs in the nightside ionosphere. The dissertation provides a novel method to look at and analyze 2-dimensional data with inconsistent time-steps for EPB detection and tracking. During development, preprocessing of large scale (multiple years) data proved to be the largest time sync. To that end, this dissertation tests the possibility of using convolution neural networks for detection of EPBs with the end goal of reducing the amount of preprocessing necessary. Further, data from the Ionospheric Connection Explorer's (ICON's) ion velocity meter (IVM) are compared to EPBs detected via GOLD to understand how the ambient plasma around the EPBs behave. Along with the ambient plasma, zonal and meridional thermospheric winds observed by ICON's Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument are analyzed in conjunction with the same EPBs to understand how winds coincident with EPBs behave. An analysis of winds before EPBs form is also done to observe the potential for both zonal and meridional winds' ability to suppress and amplify EPB formation. / Doctor of Philosophy / Equatorial plasma bubbles (EPBs) are large structures that generally form during post- sunset along Earth's magnetic equator. While referred to as `bubbles', EPBs tend to be thousands of kilometers from north to south and hundreds of kilometers from east to west and well over a thousands kilometers in altitude. EPBs are a well documented occurrence with observations spanning many decades. This includes their ability to interfere with radar and GPS. This dissertation expands on the scientific community's understanding by focusing on the detection and tracking of EPBs along the magnetic equator. To do this, observations from the NASA Global-Scale Observations of the Limb and Disk (GOLD) mission are analyzed. GOLD provides consistent observations looking over the eastern region of the Americas, Atlantic, and western Africa. A unique method to look at and analyze this data for EPB detection and tracking is developed. This dissertation also tests the possibility of using machine learning for detection of EPBs. Further, data from the NASA Ionospheric Connection Explorer (ICON) mission is compared to EPBs detected via GOLD to understand how the behavior of the upper atmosphere and the conductive region therein, known as the ionosphere, interact with the EBPs themselves.
339

An assessment of the GPS L5 signal based on multiple vendor receivers

Smyers, Serena Ashley 21 February 2012 (has links)
The L5 signal of the Global Positioning System (GPS) is becoming available on an increasing number of Block IIF satellites. As the third civilian signal, L5 is superior in signal design to the L1 C/A and L2C civilian signals. This new signal has been marked healthy for use on selected satellites since 2010, yet the hardware capable of tracking the L5 signal is still in the early stages of development. This work investigates the characteristics of the new signal and the quality of data produced by L5-tracking receivers. Commonly used receiver models chosen for this study are the Leica GRX1200+GNSS, the Trimble NetR8, and the Javad Delta TRE-G3TH. The metrics used in this analysis to assess the quality of data produced by these receivers are signal strength, receiver phase noise, receiver code noise, and multipath. The data used in these analyses were obtained from the International GNSS Service for the days of the year 275 to 281 in 2011. Metrics averaged over the GPS week 1656 provide a good indication of the overall performance of the receivers. / text
340

Definition and implementation of a new service for precise GNSS positioning / Définition et mise en œuvre d’un nouveau service de positionnement précis par GNSS / Definição e implementação de um novo serviço para posicionamento preciso por GNSS

Oliveira Junior, Paulo Sérgio de 05 September 2017 (has links)
Le PPP (Precise Point Positioning) est une méthode GNSS (Global Navigation Satellite Systems), basée sur le concept SSR (State Space Representation). Grâce aux améliorations récentes des modèles atmosphériques, le PPP en temps réel (RT-PPP) peut être également amélioré. L'objectif principal de ce travail est d'étudier le RT-PPP et l'infrastructure optimisée en termes de coûts et d'avantages pour réaliser la méthode en utilisant des corrections atmosphériques. Pour cela, différentes configurations d'un réseau GNSS dense et régulier existant en France, le réseau Orphéon, sont utilisées. Ce réseau compte environ 160 sites, propriété de Geodata-Diffusion (Hexagon Geosystems). Dans un premier temps, le mode «PPP-RTK flottant» a été évalué, il correspond au RT-PPP avec des améliorations issues des corrections de réseau, mais avec les ambiguïtés flottantes. Ensuite, des corrections de réseau sont appliquées pour améliorer le mode « PPP-RTK » où les ambiguïtés sont fixées à leurs valeurs entières. Pour le PPP-RTK flottant, une version modifiée du package RTKLib 2.4.3 (beta) est utilisée pour prendre en compte les corrections réseau. Les effets ionosphériques de premier ordre ont été éliminés par la combinaison iono-free et le retard troposphérique zénithal est estimé. Les corrections ont été appliquées en introduisant des paramètres troposphériques a priori contraints. Une modélisation adaptative basée sur les OFCs (Optimal Fitting Coefficients) a été mise en place pour décrire le comportement de la troposphère, en utilisant des estimations des retards troposphériques pour les stations Orphéon. Cette solution permet une communication monodirectionnelle entre le serveur et l'utilisateur. Les gains réalisés sur le temps de convergence pour obtenir un positionnement de 10 centimètres de précision ont été quantifiés statistiquement. La topologie du réseau a été évaluée, en réduisant le nombre de stations de référence (jusqu'à 75%), via une configuration de réseau lâche. Dans la deuxième étape, le PPP-RTK est réalisé grâce au logiciel PPP-Wizard 1.3 et avec les produits temps réel CNES (Centre Nacional de Estudes Spatiales) pour les orbites, les horloges et les biais de phase des satellites. Le RT-IPPP (RT-Integer PPP) est réalisé avec estimation des délais troposphériques et ionosphériques. Les corrections ionosphériques et troposphériques sont introduites en tant que paramètres a priori contraints au PPP-RTK. Pour générer des corrections ionosphériques, il a été mis en place un algorithme d'interpolation à distance inversée (IDW–Inverse Distance Weighting). Les améliorations apportées au positionnement horizontal dues aux corrections atmosphériques SSR externes provenant d’un réseau (dense ou lâche) sont prometteuses et peuvent être utiles pour les applications qui dépendent principalement du positionnement horizontal. / PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) method, based on SSR (State Space Representation) concept. Thanks to recent improvements in atmospheric models, Real-time PPP (RT-PPP) can also be improved. The main objective of this work is to study the RT-PPP and the optimized infrastructure in terms of costs and benefits to realize the method using atmospheric corrections. Therefore, different configurations of a dense and regular GNSS network existing in France, the Orpheon network, are used. This network has about 160 sites and is owned by Geodata-Diffusion (Hexagon Geosystems). Initially, ‘float PPP-RTK’ was evaluated, it corresponds to RT-PPP with improvements resulting from network corrections, although with ambiguities kept float. Further on, network corrections are applied to improve “PPP-RTK” where ambiguities are fixed to their integer values. For the float PPP-RTK, a modified version of the RTKLib 2.4.3 (beta) package is used to apply network corrections. First-order ionospheric effects were eliminated by the iono-free combination and zenith tropospheric delay estimated. The corrections were applied by introducing a priori constrained tropospheric parameters. Adaptive modeling based on OFCs (Optimal Fitting Coefficients) has been developed to describe the behavior of the troposphere, using estimates of tropospheric delays for Orpheon stations. This solution allows one-way communication between the server and the user. The gains achieved in convergence time to 10 centimeters accuracy were statistically quantified. Network topology was assessed by reducing the number of reference stations (up to 75%) using a sparse network configuration. In the second step, PPP-RTK is realized using the PPP-Wizard 1.3 software and CNES (Centre National d'Etudes Spatiales) real-time products for orbits, clocks and phase biases of satellites. The RT-IPPP (RT-Integer PPP) is performed with estimation of tropospheric and ionospheric delays. Ionospheric and tropospheric corrections are introduced as a priori parameters constrained in PPP-RTK. To generate ionospheric corrections, it was implemented an Inverse Distance Weighting (IDW) algorithm. Improvements achieved in horizontal positioning due to external SSR corrections from a (dense or sparse) network are promising and may be useful for applications that depend primarily on horizontal positioning. / O PPP (Precise Point Positioning) é um método GNSS (Global Navigation Satellite Systems) baseado no conceito SSR (State Space Representation). Graças às melhorias recentes nos modelos atmosféricos, o PPP em tempo real (RT-PPP) também pode ser aprimorado. O objetivo principal deste trabalho é estudar o RT-PPP e a infraestrutura otimizada em termos de custos e benefícios para realizar o método usando correções atmosféricas. Portanto, são utilizadas diferentes configurações de uma rede GNSS densa e regular existente na França, a rede Orphéon. Esta rede tem cerca de 160 estações, sendo propriedade da Geodata-Diffusion (Hexagon Geosystems). Inicialmente, foi avaliado o "float PPP-RTK", que corresponde ao RT-PPP com melhorias resultantes de correções de rede, embora mantendo as ambiguidades como float. Em um segundo momento, as correções de rede são aplicadas para aprimorar o "PPP-RTK", onde ambiguidades são fixadas para seus valores inteiros. Para o float PPP-RTK, uma versão modificada do software RTKLib 2.4.3 (beta) é empregada de modo a levar em consideração as correções de rede. Os efeitos ionosféricos de primeira ordem foram eliminados pela combinação iono-free e o atraso troposférico é estimado. As correções são aplicadas introduzindo parâmetros troposféricos a priori injuncionados. Uma modelagem adaptativa baseada em OFCs (Optimal Fitting Coefficients) foi implementada para descrever o comportamento da troposfera, utilizando estimativas de atraso troposférico para estações da rede Orpheon. Tal solução permite a comunicação unidirecional entre o servidor e o usuário. Os ganhos alcançados no tempo de convergência para acurácia de 10 centímetros foram quantificados estatisticamente. A topologia de rede foi avaliada reduzindo o número de estações de referência (até 75%) usando uma configuração de rede esparsa. Na segunda etapa, o PPP-RTK é realizado usando o software PPP-Wizard 1.3, bem como os produtos para tempo real do CNES (Centre National d’Etudes Spatiales) de órbitas, relógios e biases de fase de satélites. O RT-IPPP (RT-Integer PPP) é realizado com estimativa de atrasos troposféricos e ionosféricos. As correções ionosféricas e troposféricas são introduzidas como parâmetros a priori injuncionados no PPP-RTK. Para gerar correções ionosféricas, foi implementado um algoritmo baseado na ponderação pelo inverso da distância (IDW–Inverse Distance Weighting). As melhorias alcançadas no posicionamento horizontal com o uso das correções SSR externas de uma rede (densa ou esparsa) são promissoras e podem ser úteis para aplicações que dependem principalmente do posicionamento horizontal.

Page generated in 0.0802 seconds