Spelling suggestions: "subject:"ironreducing bacteria"" "subject:"inreducing bacteria""
1 |
Mobilité des éléments traces métalliques dans les sédiments : couplage et comparaison des approches chimique et microbiologique / Mobility of trace metals in sediments : coupling and comparison of chemical and microbiological aspectsGounou, Catherine 09 July 2008 (has links)
Les activités anthropiques entraînent une contamination des sédiments de rivière en de nombreux polluants et en particulier en éléments traces métalliques (ETM). Si la majorité des ETM se retrouvent piégés dans les sédiments, ceux-ci peuvent être remobilisés et passer en solution dans certaines conditions physico-chimiques et sous l’action des microorganismes autochtones. Les métaux relargués peuvent alors constituer un danger potentiel pour les organismes vivants dans les sédiments et dans la colonne d'eau. Dans le cas des sols, l’impact de l’activité microbienne autochtone sur la mobilité des ETM a souvent été rapporté. Cependant une telle activité de solubilisation n’a été que rarement étudiée dans le cas des sédiments. Une telle connaissance est pourtant importante pour la prédiction du comportement des métaux contenus dans les sédiments et la gestion de ces derniers, notamment lors de leur stockage suite aux opérations de dragage. Dans ce contexte, l’objectif de cette thèse a été de comprendre et d’évaluer l’importance de certains des processus microbiens et chimiques de mobilité des ETM dans les sédiments en conditions anaérobies. La première phase de notre étude qui a consisté à incuber des sédiments de Seine et de Marne en milieu anaérobie dopé en glucose avait pour objectif d’étudier la corrélation entre le métabolisme microbien et le comportement des métaux en solution et dans les sédiments. Dans ces conditions opératoires, une forte solubilisation du fer et du manganèse (sous forme réduite) associée à une solubilisation de métaux traces (Co, Cu, Ni) a été mise en évidence, ce qui a laissé supposer l’intervention de bactéries ferri-réductrices dans les phénomènes observés. Une activité fermentaire importante a été observée et caractérisée par la production d’acides organiques majoritaires tels que les acides acétique et butyrique. Un tel résultat souligne l’importance des bactéries fermentatrices dans les phénomènes de dissolution observés. La deuxième étape de ce travail a consisté à confirmer l’importance de l’activité ferri-réductrice et à en identifier les acteurs principaux. Les analyses moléculaires menées ont montré que les bactéries ferri-réductrices majoritairement identifiées, appartiennent aux espèces Clostridium butyricum et Paenibacillus polymyxa. L’utilisation d’un modèle géochimique nous a permis de montrer que les voies métaboliques supportant la réduction du fer et la mobilité des métaux étaient les fermentations butyrique et acétique. La troisième étape a consisté à comparer les impacts directs (réduction enzymatique) et indirects (propriétés des acides organiques produits) de Paenibacillus polymyxa et Clostridium butyricum sur la mobilité du fer, du manganèse et des autres métaux. Une telle étude a montré que les acides organiques produits (acétique, lactique, succinique, propionique et butyrique) ont un très faible impact sur la solubilisation aux pH rencontrés dans les sédiments et que la réduction enzymatique microbienne est le principal mécanisme de dissolution des éléments métalliques en milieu anaérobie / Antropic activities lead to the metallic contamination of river sediments. Most of trace metals are sorbed on sediments but a part of them can be released into aquatic environment when environmental conditions are modified. This is often due by the autochthonous microbial activity. Microbial activites and their consequences on the mobility of metals have been widely studied in soils. Metals are released through direct or indirect microbial mechanisms. Such studies in the case of sediments are very seldom. However, it can be usefull to understand the microbial mechanisms of metal release in sediments, and particularly for a good management of dredged sediments. In this environmental framework, the aim of this research work was to understand and to evaluate the role of the microbial and chemical mechanisms in the release of metals from river sediments in anaerobic conditions. Firstly, sediments from the Marne and Seine rivers were incubated in anaerobic conditions. A high solubilisation of iron and manganese occurred associated to the solubilisation of trace metals (Co, Cu, Ni, Pb). Meanwhile, organic acids were produced and the medium was acidified. Thus fermentation was supposed to be the main process of microbial metabolism. Furthermore these observations led us to suppose the presence of iron-reducing bacteria. In a second step, the extent of the iron-reducing activity was studied. The main iron-reducing bacteria identified in the Marne sediments belonged to the species Clostridium butyricum and Paenibacillus polymyxa. The use of a geochemical model revealed that fermentation and reduction of iron(III) were the main metabolic pathways. Finally direct (enzymatic reduction) and indirect (complexation with organic acids, acidification) impacts of iron-reducing bacteria on the release of metals were compared. Acidification and organic acids had a weak impact on metal solubility in the range of studied pH (between 6,5 and 5). Enzymatic reduction is the main mechanisms of metal release in anaerobic conditions. Indeed the metallic concentrations can be 40 times higher in the presence of iron-reducing bacteria
|
2 |
Caracterização da comunidade microbiana de biofilme anaeróbio em presença de bifenilas policloradas / Characterization of the microcial community in the presence of polychlorinated biphenylsSilva, Mara Rúbia de Lima e 27 April 2012 (has links)
Bifenilas policloradas (PCBs) são compostos de difícil degradação presentes na composição de ascarel, muito utilizado como fluidos dielétricos e isolantes. Neste contexto, a presente pesquisa teve como objetivo avaliar a diversidade de microrganismos em biofilmes de reatores anaeróbios na presença de PCB empregando Métodos de Microbiologia de Anaeróbios Estritos e de Biologia Molecular. Em reator anaeróbio horizontal de leito fixo (RAHLF), alimentado com etanol, formiato, Triton X-100 (0,1%) e ascarel (1 mL/L), operado com tempo de detenção hidráulica (TDH) de 24 horas, foi retirado a comunidade microbiana do biofilme da espuma de poliuretano. Os grupos microbianos encontrados por meio da clonagem e sequenciamento do gene RNAr 16S para o domínio Bacteria foram relacionados aos filos Thermogae, Proteobacteria (Brachymonas petroleovorans, 100% de similaridade e Methylobacillus, 98% de similaridade), Firmicutes (Clostridium, 97% de similaridade, Syntrophomonas, 100% de similaridade e Sporomusa com 100% de similaridade), Synegistetes (Synergistes, 98% de similaridade), Spirochaetes (Leptonema illini, 98% de similaridade), Aminanaerobia, Deferribacteres, Chlorobi, Chloroflexi e Armatimonadetes. Além disso, como nesse biofilme foram identificadas bactérias redutoras de ferro, procedeu-se a sua quantificação por meio da técnica de tubos múltiplos (NMP, Número Mais Provável) obtendo 5,26 x \'10 POT.12\' NMP/g STV de bactérias redutoras de ferro. Ensaio em batelada foi realizado separadamente sob duas condições: (1) metanogênica e (2) ferro redutora. Em ambas as condições foram adicionadas aroclor 1260 (PCB). Os reatores, sob condição metanogênica, foram alimentados com meio de cultivo Angelidaki e substratos orgânicos (formiato e etanol), além de aroclor 1260 (0,2 \'mü\'g/L). Para simular a condição redutora de ferro foi acrescido ao meio de cultura Angelidaki, EDTA férrico (1,86 g/L). A produção de metano, na presença de aroclor 1260 foi de 3,8 x \'10 POT.-4\' mmol \'CH IND.4\'/g STV. A presença de bactérias ferro redutoras foi confirmada indiretamente pela taxa média de redução férrica (90%) nos reatores em batelada, após 60 dias de operação. Por meio de PCR/DGGE, elaborou-se um dendograma das amostras deste ensaio em batelada (metanogênico e redutor de ferro) comparativamente com as do reator RAHLF (biofilme presente na parede do reator e no material suporte). Os reatores em batelada apresentaram similaridade entre si de 79% e 92% para os domínios Bacteria e Archaea, respectivamente. As amostras do reator RAHLF foram 80% (Bacteria) e 96% (Archaea) similares. A existência de bactérias degradadoras de PCB, bem como, bactérias redutoras de ferro no biofilme anaeróbio contribuiu com informações sobre o consórcio microbiano e sua diversidade. / Polychlorinated biphenyls (PCBs) are compounds of difficult degradation, a component of askarel, which were used widely as coolants and lubricants. Hence, this study evaluated the diversity of microorganisms in the presence of PCBs in anaerobic reactors. For such, methods as Strict Anaerobic Microbiology and Molecular Biology were employed. The microbial community of the biofilm, developed in a fixed horizontal bed anaerobic reactor (RAHLF), was studied using the technique of cloning and sequencing of RNAr 16S gene for the Bacteria domain. The reactor had immobilized cells in polyurethane foam with ethanol and formate as a carbon source, Triton X-100 (0.1%) and polychlorinated biphenyls (1 mL/L), and operated with 24 hours HRT. The microbial groups found in this biofilm were related to phyla Thermogae, Proteobacteria (Brachymonas petroleovorans, 100% similarity and Methylobacillus, 98% similarity), Firmicutes (Clostridium, 97% similarity Syntrophomonas, and 100% similarity with Sporomusa 100% similarity), Synegistetes (Synergistes, 98% similarity), Spirochaetes (Leptonema Illini, 98% similarity), Aminanaerobia, Deferribacteres, Chlorobi, Chloroflexi and Armatimonadetes. Furthermore, as bacteria that reduce iron were found, we proceeded the quantification by the multiple tube method (MPN) for this group, obtaining 5.26 x \'10 POT.12\' MPN/g STV of iron-reducing bacteria. The batch reactors evaluated the growth of microorganisms in two condictions: (1) methanogenic e (2) iron reduction, both had the presence of PCBs (Aroclor 1260). The reactor, under methanogenic condition, was fed with synthetic substrate Angelidaki, ethanol and formate, used as carbon source, and aroclor 1260 (0.2 \'mü\'g /L). To simulate the condition of iron reducing, the same synthetic substrate was supplemented with ferric EDTA (1.86 g/L). The production of methane in the presence of aroclor 1260, was 3.8 x \'10 POT.-4\' mmol \'CH IND.4\'/g STV. The presence of iron reducing bacteria, after 60 days, was confirmed indirectly by the average rate of iron ferric reduction (90%). Filogenetics analysis (PCR/DGGE) compared the samples of this batch reactor - methanogenic and reduction of iron ferric -, with the samples of RAHLF - the biofilm in the reactor wall and the support material. The two condictions in batch reactors showed similarity of 79% and 92% respectively for the Bacteria and Archaea domain. Therefore, both samples of RAHLF showed 80% (Bacteria) and 96% (Archaea) of similarity. In other words, more similarity were presented due configuration of the reactor as well as the type of PCB added. As a result, the existence of PCBs degrading bacteria and iron-reducing bacteria in anaerobic biofilm, provided informations about the microbial consortium and its diversity in the presence of PCB.
|
3 |
Caracterização da comunidade microbiana de biofilme anaeróbio em presença de bifenilas policloradas / Characterization of the microcial community in the presence of polychlorinated biphenylsMara Rúbia de Lima e Silva 27 April 2012 (has links)
Bifenilas policloradas (PCBs) são compostos de difícil degradação presentes na composição de ascarel, muito utilizado como fluidos dielétricos e isolantes. Neste contexto, a presente pesquisa teve como objetivo avaliar a diversidade de microrganismos em biofilmes de reatores anaeróbios na presença de PCB empregando Métodos de Microbiologia de Anaeróbios Estritos e de Biologia Molecular. Em reator anaeróbio horizontal de leito fixo (RAHLF), alimentado com etanol, formiato, Triton X-100 (0,1%) e ascarel (1 mL/L), operado com tempo de detenção hidráulica (TDH) de 24 horas, foi retirado a comunidade microbiana do biofilme da espuma de poliuretano. Os grupos microbianos encontrados por meio da clonagem e sequenciamento do gene RNAr 16S para o domínio Bacteria foram relacionados aos filos Thermogae, Proteobacteria (Brachymonas petroleovorans, 100% de similaridade e Methylobacillus, 98% de similaridade), Firmicutes (Clostridium, 97% de similaridade, Syntrophomonas, 100% de similaridade e Sporomusa com 100% de similaridade), Synegistetes (Synergistes, 98% de similaridade), Spirochaetes (Leptonema illini, 98% de similaridade), Aminanaerobia, Deferribacteres, Chlorobi, Chloroflexi e Armatimonadetes. Além disso, como nesse biofilme foram identificadas bactérias redutoras de ferro, procedeu-se a sua quantificação por meio da técnica de tubos múltiplos (NMP, Número Mais Provável) obtendo 5,26 x \'10 POT.12\' NMP/g STV de bactérias redutoras de ferro. Ensaio em batelada foi realizado separadamente sob duas condições: (1) metanogênica e (2) ferro redutora. Em ambas as condições foram adicionadas aroclor 1260 (PCB). Os reatores, sob condição metanogênica, foram alimentados com meio de cultivo Angelidaki e substratos orgânicos (formiato e etanol), além de aroclor 1260 (0,2 \'mü\'g/L). Para simular a condição redutora de ferro foi acrescido ao meio de cultura Angelidaki, EDTA férrico (1,86 g/L). A produção de metano, na presença de aroclor 1260 foi de 3,8 x \'10 POT.-4\' mmol \'CH IND.4\'/g STV. A presença de bactérias ferro redutoras foi confirmada indiretamente pela taxa média de redução férrica (90%) nos reatores em batelada, após 60 dias de operação. Por meio de PCR/DGGE, elaborou-se um dendograma das amostras deste ensaio em batelada (metanogênico e redutor de ferro) comparativamente com as do reator RAHLF (biofilme presente na parede do reator e no material suporte). Os reatores em batelada apresentaram similaridade entre si de 79% e 92% para os domínios Bacteria e Archaea, respectivamente. As amostras do reator RAHLF foram 80% (Bacteria) e 96% (Archaea) similares. A existência de bactérias degradadoras de PCB, bem como, bactérias redutoras de ferro no biofilme anaeróbio contribuiu com informações sobre o consórcio microbiano e sua diversidade. / Polychlorinated biphenyls (PCBs) are compounds of difficult degradation, a component of askarel, which were used widely as coolants and lubricants. Hence, this study evaluated the diversity of microorganisms in the presence of PCBs in anaerobic reactors. For such, methods as Strict Anaerobic Microbiology and Molecular Biology were employed. The microbial community of the biofilm, developed in a fixed horizontal bed anaerobic reactor (RAHLF), was studied using the technique of cloning and sequencing of RNAr 16S gene for the Bacteria domain. The reactor had immobilized cells in polyurethane foam with ethanol and formate as a carbon source, Triton X-100 (0.1%) and polychlorinated biphenyls (1 mL/L), and operated with 24 hours HRT. The microbial groups found in this biofilm were related to phyla Thermogae, Proteobacteria (Brachymonas petroleovorans, 100% similarity and Methylobacillus, 98% similarity), Firmicutes (Clostridium, 97% similarity Syntrophomonas, and 100% similarity with Sporomusa 100% similarity), Synegistetes (Synergistes, 98% similarity), Spirochaetes (Leptonema Illini, 98% similarity), Aminanaerobia, Deferribacteres, Chlorobi, Chloroflexi and Armatimonadetes. Furthermore, as bacteria that reduce iron were found, we proceeded the quantification by the multiple tube method (MPN) for this group, obtaining 5.26 x \'10 POT.12\' MPN/g STV of iron-reducing bacteria. The batch reactors evaluated the growth of microorganisms in two condictions: (1) methanogenic e (2) iron reduction, both had the presence of PCBs (Aroclor 1260). The reactor, under methanogenic condition, was fed with synthetic substrate Angelidaki, ethanol and formate, used as carbon source, and aroclor 1260 (0.2 \'mü\'g /L). To simulate the condition of iron reducing, the same synthetic substrate was supplemented with ferric EDTA (1.86 g/L). The production of methane in the presence of aroclor 1260, was 3.8 x \'10 POT.-4\' mmol \'CH IND.4\'/g STV. The presence of iron reducing bacteria, after 60 days, was confirmed indirectly by the average rate of iron ferric reduction (90%). Filogenetics analysis (PCR/DGGE) compared the samples of this batch reactor - methanogenic and reduction of iron ferric -, with the samples of RAHLF - the biofilm in the reactor wall and the support material. The two condictions in batch reactors showed similarity of 79% and 92% respectively for the Bacteria and Archaea domain. Therefore, both samples of RAHLF showed 80% (Bacteria) and 96% (Archaea) of similarity. In other words, more similarity were presented due configuration of the reactor as well as the type of PCB added. As a result, the existence of PCBs degrading bacteria and iron-reducing bacteria in anaerobic biofilm, provided informations about the microbial consortium and its diversity in the presence of PCB.
|
4 |
Aplicações de bactérias redutoras de ferro. / Applications of iron-bearing bacteria.Ortiz, Júlia Helena 12 June 2018 (has links)
O ferro é um importante elemento em reações catalíticas no meio ambiente, pois possui a capacidade de ser reduzido ou oxidado. Duas espécies de ferro solúvel podem estar presentes em amostras ambientais, o Fe (II) e o Fe (III). Métodos analíticos capazes de diferenciar e quantificar estas duas espécies de ferro são muito importantes para a compreensão dos processos metabólicos dos diversos microrganismos, e também para entender a atuação destes microrganismos na remobilização do coagulante utilizado em estações de tratamento de esgotos (ETEs), nas quais é possível utilizar como coagulante o FeCl3. Porém não há trabalhos publicados que recuperam o ferro coagulado utilizando bactérias redutoras de ferro. Os objetivos deste trabalho são: 1) avaliar o método colorimétrico de fenantrolina para quantificação de Fe (II) e os principais interferentes nessas análises; e 2) avaliar o potencial do Fe (II) gerado via metabolismo das bactérias redutoras de ferro como coagulante de matéria orgânica e inorgânica de águas residuárias. Os resultados para o método colorimétrico de fenantrolina são confiáveis somente para leituras de amostras que contenham Fe (II), mas não diferencia e quantifica corretamente espécies de Fe (III) em todos os valores de pH. A separação das diferentes espécies de ferro foi feita utilizando membrana de acetato de celulose com porosidade de 0,2 m e ajustando o valor do pH para valores entre 4 e 5. Para obtenção das concentrações de Fe (II) e Fe (III), é necessário realizar a leitura em amostras filtradas e não filtradas, pois o Fe (II) passa pela membrana e o Fe (III) fica retido. Desta forma, é possível realizar a distinção das espécies de ferro, e em seguida realizar a quantificação com testes colorimétricos, seja em campo ou em laboratório. A diferenciação das espécies de ferro se mostrou importante para quantificar corretamente o Fe (III) e o Fe (II) durante o tratamento de águas residuárias utilizando Fe (III) como coagulante na forma de FeCl3. Na comparação com a recuperação ácida, a biológica se mostrou mais eficiente por não apresentar metais pesados remobilizados na fração líquida, recuperando 58% do ferro quando adicionado o glicerol como fonte de carbono. Durante a remobilização do ferro houve a produção do metano, gás de interesse econômico. A escolha do coagulante e da concentração foi determinada pela remoção da turbidez, sendo o melhor coagulante para água residuária do CRUSP o FeCl3 na concentração de 60 mg/ L de Fe, pois removeu 99% da turbidez, 98% do fosfato, 85% dos carboidratos e 100% de proteínas presentes na água residuária. Aplicando-se o coagulante remobilizado (400 mg/L), foi possível remover 85% da turbidez. O ferro recuperado servirá novamente como coagulante, favorecendo a redução dos custos com o tratamento de água residuária. / Iron is an important element in catalytical action in the environment as it has an ability to be filtered or oxidized. Soluble iron species may be present in environmental samples, Fe (II) and Fe (III). Analytical methods capable of differentiating and quantifying these two iron species are very important for the remobilization of coagulation in sewage treatment plants (ETEs), in which FeCl3 can be used as a coagulant. It is not a job that recovers coagulated iron with iron reducing units. The objectives of this work are: 1) to evaluate the colorimetric method of phenanthroline for quantification of Fe (II) and the main interferents in these analyzes; and 2) to evaluate the potential of Fe (II) through the metabolism of iron-reducing bacteria as a coagulant of organic and inorganic wastewater. The results for the colorimetric method of phenanthroline are only for the readings of samples containing Fe (II), but do not differentiate and quantify the Fe (III) species at all pH values. The separation of the fish fiber species was left to the cellulose acetate test with the porosity of 0.2 m and adjusting the pH value to values between 4 and 5. For the concentration of Fe (II) and Fe (III), it is necessary to read in filtered and unfiltered samples, as Fe (II) passes through the membrane and Fe (III) is retained. In this way, it is possible to perform an analysis of the iron species, and then perform quantification with colorimetric tests, either in the field or in the laboratory. Differentiation of iron species has become important in correctly quantifying Fe (III) and Fe (II) during wastewater treatment using Fe (III) as a coagulant in the form of FeCl3. In comparison with an acid replica, a biological recovery is done through large amounts of remobilized in the liquid fraction, recovering 58% of the iron when the glycerol as carbon source. During the remobilization of the iron there was a production of methane, gas of economic interest. The choice of the coagulant and the capacity was determined by the removal of the turbidity, being the best coagulant for the residual water of the CRUSP the FeCl3 in the concentration of 60 mg/L of Fe, since it removed 99% of the turbidity, 98% of the phosphate, 85% of carbohydrates and 100% of proteins present in the wastewater. Applying the remobilized coagulant (400 mg/L), it was 85% turbidity remover. The recovered iron will again serve as a coagulant, favoring the reduction of costs with the treatment of wastewater.
|
5 |
Assessment of biogeochemical deposits in landfill leachate drainage systems phase IISaleh, Abdul R. Mulla 01 June 2006 (has links)
Land disposal of solid waste is a vital component of any solid waste management system. Design, operation and closure of municipal solid waste (MSW) landfills are required by regulations to control leachate and gases generated during the life, closure,and post-closure of the facility. Clogging of leachate drainage and removal systems in landfills is a common phenomenon and has been acknowledged in several landfills throughout the United States and abroad. This project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Leachate characteristics data obtained in Phase I was processed and analyzed, along with supplementary data obtained in Phase II on liquid and solid phase testing. Leachate samples from the landfill and lysimeters indicated the presence of iron and sulfate-reducing bacteria. These bacteria are known to facilitate biologically induced precipitate formation.The mechanism by which biologically ind
uced precipitate may form begins with oxidizing acetate by iron and sulfate-reducing bacteria, reducing sulfate to sulfide and ferric iron to ferrous, and then forming calcium carbonate, iron sulfate, and possibly dolomite and other minerals.The results show that the clogging mechanism is driven by two major processes: transformation of volatile acids to substrates by iron and sulfate-reducing bacteria causing local pH and total carbonate to increase, which accelerate calcium carbonate precipitation, and thermodynamically favored reactions in supersaturated conditions based on saturation indices of calcium, sulfide, iron, and other species with respect to minerals. For each 1 mg of consumed volatile acids there were 1.7 mg of calcium, 0.28 mg of sulfate, and 0.03 mg of iron removed. Field and lysimeter precipitate samples were analyzed (using X-Ray Diffraction, Scanning Electron microscopy, and Electron Dispersive Spectroscopy) and correlated with geochemical modeling of leachate const
ituents. Precipitate analyses showed the presence of calcium carbonate, brushite (calcium phosphate),and dolomite, where as geochemical modeling showed that calcium carbonate, hydroxyapatite (complex of calcium phosphate), dolomite, pyrite, and siderite may be formed from field and lysimeter leachate constituents. The results also showed that submerged and stagnant conditions in the leachate collction systems accelerate the precipitation process.
|
6 |
Le rôle des bactéries hydrogénotrophes et ferri-réductrices sur le processus de corrosion en contexte de stockage géologique / The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposalKerber Schütz, Marta 13 December 2013 (has links)
L’objectif principal de cette étude est d’évaluer le rôle de l’activité de bactéries hydrogénotrophes et ferri-réductrices sur le processus de corrosion anoxique en utilisant des indicateurs géochimiques. Il est considéré que le couple redox H2/Fe(III) est un moteur important pour les activités bactériennes qui peuvent ainsi affecter les vitesses de corrosion par la déstabilisation des couches de passivation (i.e. magnétite, Fe3O4). Les résultats indiquent que la magnétite de synthèse est déstabilisée en présence de bactéries hydrogénotrophes et ferri-réductrices due à la réduction du Fe(III) structural couplée à l’oxydation de l’H2. La quantité de Fe(III) bioréduit est augmentée en présence de concentrations croissantes en H2 dans le système: 4% H2 < 10% H2 < 60% H2. De plus, les résultats indiquent que la réaction de corrosion est différente selon la composition de la solution et la surface de contact de l’échantillon métallique (poudre de fer ou coupon en acier au carbone). Les produits de corrosion solides sont différents pour chaque échantillon étudié: vivianite, sidérite et chukanovite sont les principales phases minérales identifiées dans les expériences avec de la poudre de fer, tandis que vivianite et magnétite sont identifiées en présence de coupons en acier au carbone. Les résultats montrent que la vitesse de corrosion est quasiment deux fois plus importante en présence de bactéries après 5 mois de réaction. Cette étude apporte une nouvelle approche sur la compréhension des phénomènes de biocorrosion, l’identification des mécanismes physico-chimiques et la détermination des paramètres contrôlant la vitesse de corrosion. / The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. It is assumed that the redox couple H2/Fe(III) is an important driver for bacterial activities potentially affecting the corrosion rate by destabilization of passive layers (i.e. magnetite, Fe3O4). Our results indicate that synthetized Fe3O4 is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H2 concentration in the system: 4% H2 < 10% H2 < 60% H2. Moreover, the results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). The solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is increased almost two-fold in the presence of bacteria after 5 months of reaction. This study gives new insights regarding the understanding of biocorrosion phenomena, identification of physicochemical mechanisms, and determination of key parameters controlling the corrosion rate.
|
7 |
Effets de l'activité bactérienne réductrice du fer ferrique et des nitrates sur les transformations des produits de corrosion magnetite et sidérite de l'acier non allié / Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steelEtique, Marjorie 28 November 2014 (has links)
En France, il est envisagé de stocker en formation géologique profonde les déchets radioactifs vitrifiés à haute activité et vie longue dans un conteneur en acier inoxydable chemisé par un surconteneur en acier non allié. Les principaux produits de corrosion attendus à la surface de ce dernier, i.e. la sidérite (FeIICO3) et la magnétite (FeIIFeIII2O4), jouent un rôle protecteur contre la corrosion en tant que couche passivante. Ce travail de thèse visait à étudier l’influence des groupes métaboliques bactériens réducteurs du fer ferrique (IRB) et des nitrates (NRB) sur les transformations de ces produits de corrosion en anoxie. Des souches modèles de NRB (Klebsiella mobilis) et IRB (Shewanella putrefaciens) ont, dans un premier temps, été incubées en présence de suspension de sidérite ou de magnétite, afin d’exacerber les processus de transformation du fer du fait d’une surface spécifique élevée, puis dans un second temps, en présence de films électrogénérés de ces produits pour se rapprocher des conditions d’un acier non allié corrodé en anoxie. Ces souches bactériennes sont capables de transformer la sidérite et la magnétite par des processus microbiens directs ou indirects et de conduire à la formation de rouille verte carbonatée (FeII4FeIII2(OH)12CO3). Ce composé occupe une place centrale dans le cycle biogéochimique du fer en anoxie en tant que transitoire commun à plusieurs réactions microbiennes mobilisant le fer sous deux états d’oxydation différents FeII et FeIII. L’originalité de ce travail de thèse est donc de montrer que des métabolismes bactériens inaccoutumés tels que les NRB ou les IRB sont susceptibles de jouer un rôle dans les processus de biocorrosion / Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (FeIICO3) and magnetite (FeIIFeIII2O4). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (FeII4FeIII2(OH)12CO3). As a transient phase shared by several bacterial reactions involving FeII and FeIII, this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in biocorrosion processes
|
8 |
Réactivité géomicrobiologique des matériaux et minéraux ferrifères : impact sur la sureté d'un stockage de déchets radioactifs en milieux argileux / Geomicrobiological reactivity of iron materials : impact on geological disposal of radioactive wastesEsnault, Loïc 09 December 2010 (has links)
Cette thèse s'est attachée à décrire le concept dynamique d'une activité microbiologique viable et durable en conditions de stockage géologique profond et à évaluer son impact sur les propriétés de confinement et les composants du stockage. Ainsi, dans cette étude, un modèle bactérien basé sur la ferriréduction a été choisi pour ses critères de viabilité dans le système et sa capacité à altérer les matériaux dans les conditions du stockage. Les principaux résultats de ce travail de thèse ont permis de démontrer la capacité du milieu à supporter l'activité bactérienne ferriréductrice et les conditions de son développement dans les environnements argileux profonds. Il a été clairement montré la biodisponibilité du Fe(III) structural des matériaux argileux et des oxydes de fer produits lors des processus de corrosion métallique. Dans ce système, la corrosion paraît être un facteur positif pour les activités bactériennes notamment en produisant une source énergétique, l'hydrogène. Les activités bactériennes ferriréductrices peuvent entraîner une reprise de la corrosion métallique via la consommation des oxydes de fer de la couche passivante. La conséquence directe pourrait être une diminution de la durée de vie des enveloppes métalliques de colisage. Dans le cas des matériaux argileux ferrifères, les conséquences d'une telle activité sont telles qu'elles peuvent avoir un impact sur l'ensemble de l'édifice poreux que ce soit en termes de réactivité chimique des matériaux ou de comportement physique de la barrière argileuse. Un des résultats les plus marquants est la cristallisation de nouvelles phases argileuses à des températures très basses, inférieures à 40°C, témoignant de l'influence considérable de l'activité microbienne anaérobie dans les transformations minéralogiques des minéraux argileux. De plus, il faut noter que ces expériences ont permis de visualiser pour la première fois un mécanisme de respiration bactérienne à distance via une extension de la disponibilité d'éléments essentiels, ici le Fe3+. En conclusion, ces résultats ont clairement démontré l'impact du facteur microbiologique sur la réactivité des matériaux argileux et métalliques tout en s'appuyant sur des paramètres de contrôle de l'activité bactérienne. La pertinence de la prise en compte de ces activités microbiologiques dans le cas des évaluations de sûreté d'un stockage est ainsi établie. / This thesis sought to describe the dynamic concept of a viable and sustainable microbiological activity under deep geological disposal conditions and to assess its impact on containment properties and storage components. Thus, in this study, a model based on the bacterial ferric reduction was chosen for its sustainability criteria in the system and its ability to alter the materials in storage conditions. The main results of this work demonstrated the capability of the environment to stand the iron-reducing bacterial activity and the conditions of its development in the deep clay environments. The bio-availability of structural Fe (III) in clay minerals and iron oxides produced during the process of metal corrosion was clearly demonstrated. In this system, the corrosion appears to be a positive factor on bacterial activities by producing an energy source, hydrogen. The iron-reducing bacterial activities can lead to a resumption of metallic corrosion through the consumption of iron oxides in the passive film. The direct consequence would be a reduction of the lifetime of metal containers. In the case of ferric clay minerals, the consequences of such an activity are such that they can have an impact on the overall porous structure both in terms of chemical reactivity of the materials or physical behavior of the clayey barrier. One of the most significant results is the crystallization of new clay phases at very low temperatures, below 40°C, highlighting the influence of the anaerobic microbial activity in the mineralogical transformations of clay minerals. Furthermore, these experiments also allowed to visualize, for the first time, a mechanism of bacterial respiration at distance, this increases the field of the availability of essential elements as Fe3+ for bacterial growth in extreme environment. In conclusion, these results clearly showed the impact of the microbiological factor on the reactivity of clay and metal minerals, while relying on control parameters on bacterial activity. The relevance of taking into account these microbiological activities in the case of safety assessments of a repository is then established.
|
9 |
Insights into Autotrophic Activities and Carbon Flow in Iron-Rich Pelagic Aggregates (Iron Snow)Li, Qianqian, Cooper, Rebecca E., Wegner, Carl-Eric, Taubert, Martin, Jehmlich, Nico, von Bergen, Martin, Küsel, Kirsten 05 May 2023 (has links)
Pelagic aggregates function as biological carbon pumps for transporting fixed organic carbon to sediments. In iron-rich (ferruginous) lakes, photoferrotrophic and chemolithoautotrophic bacteria contribute to CO2 fixation by oxidizing reduced iron, leading to the formation of iron-rich pelagic aggregates (iron snow). The significance of iron oxidizers in carbon fixation, their general role in iron snow functioning and the flow of carbon within iron snow is still unclear. Here, we combined a two-year metatranscriptome analysis of iron snow collected from an acidic lake with protein-based stable isotope probing to determine general metabolic activities and to trace 13CO2 incorporation in iron snow over time under oxic and anoxic conditions. mRNA-derived metatranscriptome of iron snow identified four key players (Leptospirillum, Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6–85.7%) encoding ecologically relevant pathways, including carbon fixation and polysaccharide biosynthesis. No transcriptional activity for carbon fixation from archaea or eukaryotes was detected. 13CO2 incorporation studies identified active chemolithoautotroph Ferrovum under both conditions. Only 1.0–5.3% relative 13C abundances were found in heterotrophic Acidiphilium and Acidocella under oxic conditions. These data show that iron oxidizers play an important role in CO2 fixation, but the majority of fixed C will be directly transported to the sediment without feeding heterotrophs in the water column in acidic ferruginous lakes.
|
10 |
THE GEOMICROBIOLOGY OF SUSPENDED AQUATIC FLOCS: LINKS BETWEEN MICROBIAL ECOLOGY, FE(III/II)-REDOX CYCLING, & TRACE ELEMENT BEHAVIOURElliott, Amy V. C. 10 1900 (has links)
<p>This doctoral research comparatively assesses the biogeochemical properties of suspended aquatic flocs through a integrated field-laboratory approach; providing new insight into the linkages among floc associated bacteria, floc-reactive solid phases and trace metal uptake.</p> <p>Results show flocs to possess a distinct geochemistry, microbiology and composition from bed sedimentary materials in close proximity (III-oxyhydroxide minerals (FeOOH); resulting in localized floc-Fe-mineral precipitates and enhanced reactivity. Further, the Fe-enrichment of floc and of floc bio-mineral constituents in turn provides an important and novel lens through which to examine how environmental microbial communities, microbial metabolism and Fe<sup>III</sup>/Fe<sup>II </sup>redox transformations interact. The results were the discovery of floc-hosted, Fe<sup>III/II</sup>-redox cycling bacterial consortia across diverse oxygenated (O<sub>2</sub><sup>Sat.</sup>=1-103%) aquatic systems, which were not predicted to sustain bacterial Fe-metabolism. Both environmental<em> </em>and experimentally-developed consortial aggregates constituted multiple genera of aero-intolerant Fe<sup>III</sup>-reducing and Fe<sup>II</sup>-oxidizing bacteria together with oxygen consuming organotrophic species. These findings highlight that the implementation of geochemical thermodynamic constraints alone as a guide to investigating and interpreting microbe-geosphere interactions may not accurately capture processes occurring <em>in situ.</em></p> <p><em> </em> Seasonal investigation of microbial Fe<sup>III/II</sup>-redox transformations highlighted the interdependence of floc Fe-redox cycling consortia members, revealing that cold conditions and a turnover in putative Fe-reducing community membership extinguishes the potential for coupled Fe-redox cycling by wintertime floc bacteria. Further, the observed summer-winter seasonal turnover of <em>in situ</em> floc community membership corresponded with an overall shift from dominant Fe to S redox cycling bacterial communities. This significantly impacted observable floc Fe and TE (Cd, Pb) geochemistry, resulting in a shift in floc associated Fe-phases from dominantly Fe<sup>(III)</sup><sub>(s) </sub> to Fe<sup>(II)</sup><sub>(s)</sub>, and, in turn, corresponded to a large decrease of TE uptake by flocs under ice.</p> / Doctor of Science (PhD)
|
Page generated in 0.1022 seconds