• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 4
  • 1
  • Tagged with
  • 33
  • 33
  • 23
  • 19
  • 14
  • 13
  • 13
  • 13
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Development of Hardware in the Loop Real-Time Control Techniques for Hybrid Power Systems Involving Distributed Demands and Sustainable Energy Sources

Mazloomzadeh, Ali 07 November 2014 (has links)
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid. Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures.
32

Modelagem e controle de conversores fonte de tensão utilizados em sistemas de geração fotovoltaicos conectados à rede elétrica de distribuição

Almeida, Pedro Machado de 29 April 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-20T13:39:03Z No. of bitstreams: 1 pedromachadodealmeida.pdf: 13436160 bytes, checksum: 84c66613dade0766ae9ea2bdc8be9f91 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-20T14:45:37Z (GMT) No. of bitstreams: 1 pedromachadodealmeida.pdf: 13436160 bytes, checksum: 84c66613dade0766ae9ea2bdc8be9f91 (MD5) / Made available in DSpace on 2017-04-20T14:45:37Z (GMT). No. of bitstreams: 1 pedromachadodealmeida.pdf: 13436160 bytes, checksum: 84c66613dade0766ae9ea2bdc8be9f91 (MD5) Previous issue date: 2011-04-29 / Esta dissertação apresenta uma estratégia de controle para sistemas de geração fotovoltaicos, de único estágio, trifásicos, conectados à rede elétrica de distribuição. São desenvolvidos modelos matemáticos para representar as características dinâmicas dos painéis fotovoltaicos, do conversor fonte de tensão (VSC -“Voltage Source Converter”) e da rede de distribuição. A modelagem do sistema de geração disperso (SGD) é feita no sistema de coordenadas síncrono (dq), fornecendo um sistema de equações diferenciais que pode ser usado para descrever o comportamento dinâmico do sistema quando as tensões da rede estão equilibradas ou desequilibradas. O conversor é controlado no modo de corrente, através da estratégia de modulação vetorial (Space Vector Modulation - SVM). São projetadas duas malhas de controle em cascata para controlar o conversor estático. A malha interna controla a corrente injetada na rede enquanto que a externa controla a tensão no barramento CC do conversor. O controle da tensão CC permite rastrear o ponto de máxima potência do painel PV além de controlar a quantidade de potência ativa injetada na rede CA. Um método ativo de detecção de ilhamento baseado na injeção de corrente de sequência negativa é incorporado ao sistema de controle. Resultados de simulações digitais obtidos com o programa ATP (Alternative Transient Program ) são utilizados para validar os modelos matemáticos e as estratégias de controle. Finalmente, um protótipo experimental de pequena escala é montado em laboratório. Todo o sistema de controle do protótipo experimental foi implementado no DSP TMS320F28212. Os resultados obtidos demonstram o funcionamento do sistema e podem ser usados para validar a estratégia de controle utilizada. / This dissertation presents a control strategy for a single-stage, three-phase, photovoltaic systems to be connected to a distribution network. Mathematical models are developed to represent the dynamic characteristics of the photovoltaic panels, the voltage-source converter (VSC) and the distribution network. The modeling of the dispersed generation system (DGS) is done in the synchronous reference frame (dq), providing a system of differential equations that describes the dynamic behavior of the system when the network voltages are balanced or unbalanced. The converter is controlled in current mode through the space vector modulation (SVM) strategy. Two control loops are designed to control the static converter. The inner loop controls the injected current into the network while the external loop controls the converter DC bus voltage. The DC voltage regulator allows to track the PV maximum power point and to control the active power injected into the AC grid. An active islanding detection method based on negative-sequence current injection is incorporated into the control system. Digital simulations results obtained with Alternative Transients Program (ATP) is used to validate the mathematical models and the control strategies. Finally, a small-scale experimental prototype is implemented in the laboratory. The whole control system of the experimental prototype was programmed in DSP TMS320F2812 of Texas Instruments. The results demonstrate that the operation of the system can be used to validate the applied control strategy.
33

Transient And Distributed Algorithms To Improve Islanding Detection Capability Of Inverter Based Distributed Generation

Al Hosani, Mohamed 01 January 2013 (has links)
Recently, a lot of research work has been dedicated toward enhancing performance, reliability and integrity of distributed energy resources that are integrated into distribution networks. The problem of islanding detection and islanding prevention (i.e. anti-islanding) has stimulated a lot of research due to its role in severely compromising the safety of working personnel and resulting in equipment damages. Various Islanding Detection Methods (IDMs) have been developed within the last ten years in anticipation of the tremendous increase in the penetration of Distributed Generation (DG) in distribution system. This work proposes new IDMs that rely on transient and distributed behaviors to improve integrity and performance of DGs while maintaining multi-DG islanding detection capability. In this thesis, the following questions have been addressed: How to utilize the transient behavior arising from an islanding condition to improve detectability and robust performance of IDMs in a distributive manner? How to reduce the negative stability impact of the well-known Sandia Frequency Shift (SFS) IDM while maintaining its islanding detection capability? How to incorporate the perturbations provided by each of DGs in such a way that the negative interference of different IDMs is minimized without the need of any type of communication among the different DGs? It is shown that the proposed techniques are local, scalable and robust against different loading conditions and topology changes. Also, the proposed techniques can successfully distinguish an islanding condition from other disturbances that may occur in power system networks. This work improves the efficiency, reliability and safety of integrated DGs, which presents a necessary advance toward making electric power grids a smart grid.

Page generated in 0.1191 seconds