• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 13
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 18
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Interactions protéines-membranes : conséquences sur l'état physique et l'organisation des lipides / Proteine-membrane interaction : consequences on physical state and organisation of lipids

François-Moutal, Liberty 18 April 2013 (has links)
Les isoenzymes de nucléoside diphosphate kinase (NDPK) sont connues depuis maintenant presque 60 ans et n'ont été considérées que pour leur activité catalytique de transfert de groupement phosphoryle. La découverte du gène nme, un gène antimétastatique codant une NDPK, a renouvelé l'intérêt scientifique pour cette famille d'enzymes. Il est désormais connu que la multiplication des gènes durant l'évolution a été accompagnée de diversifications structurales et fonctionnelles. J'ai étudié la fixation des NDPK-A, -B et –D (retrouvées associées aux membranes biologiques, bien que le rôle de cette association soit encore méconnu) à des membranes modèles, et j'ai trouvé des différences dans les mécanismes de fixation. J'ai montré la capacité de la NDPK-D, isoforme mitochondriale, à interagir avec des membranes anioniques ou zwitterioniques, à augmenter leur fluidité et à former des domaines protéolipidiques en présence de CL, lipide anionique spécifique de la membrane mitochondriale interne. J'ai observé cette capacité à former des domaines protéolipidiques avec d'autres protéines interagissant avec la CL, comme la créatine kinase mais pas le cytochrome C. La NDPK-A ne se fixe pas aux phospholipides du feuillet interne de la membrane plastique, ce qui suggère un autre partenaire in vivo. La NDPK-B n'interagit qu'avec des membranes anioniques via un processus en deux étapes, provoque une diminution de fluidité et est capable de former des domaines protéolipidiques. La ségrégation des lipides anioniques induite par la fixation de protéines pourrait contribuer à la formation de plateformes au sein de la membrane susceptibles de servir de point d'ancrage à de nombreuses molécules, modulant ainsi les fonctions cellulaires / Nucleoside diphosphate kinase isoenzymes (NDPK) have been known for nearly 60 years and, until recently, have been considered as housekeeping enzymes. The discovery of a nme gene, an antimetastatic gene that codes for a NDPK, revived the interest for this family. It is now known that the multiplication of nme genes throughout evolution has been accompanied with structural and functional diversification. I studied the binding of NDPK-A, -B and –D (which ae retrieved associated to cellular membranes where they are thought to play several roles) to model membranes and found differences in their behavior towards different compositions of phospholipids. I showed the ability of the NDPKD mitochondrial isoform to interact with both anionic and zwitterionic membranes, to modify their fluidity and to form proteolipidic domains in presence of CL, a mitochondrial inner membrane specific anionic lipid. I observed this ability to form proteo-cardiolipin domains with other CL interacting protein like creatine kinase but not with cytochrome c. NDPK-A was not able to bind to inner leaflet plasma membrane mimicking systems suggesting another partner in vivo. Concerning NDPK-B, it interacted only with anionic membranes via a two step-process, induced a decrease of the membrane fluidity and was able to form proteolipidic domains. Such anionic lipid segregation triggered by protein binding may contribute to platforms formation within membranes. Those platforms are then susceptible to provide a functional docking platform for numerous molecules and thus to modulate cellular functions
112

Steroid converting enzymes in breast cancer /

Gunnarsson, Cecilia, January 2005 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2005. / Härtill 4 uppsatser.
113

Discovery of novel regulators of aldehyde dehydrogenase isoenzymes

Ivanova, Yvelina Tsvetanova 30 May 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recent work has shown that specific ALDH isoenzymes can contribute to the underlying pathology of different diseases. Many ALDH isozymes are important in oxidizing reactive aldehydes resulting from lipid peroxidation, and, thus, help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes are found in many human cancers and are often associated with poor prognosis. Therefore, the development of inhibitors of the different ALDH enzymes is of interest as means to treat some of these disease states. Here I describe the results of assays designed to characterize the site of interaction and the mode of inhibition for the unique compounds that function as inhibitors of aldehyde dehydrogenase 2 and determine their respective IC50 values with intent to develop structure-activity relationships for future development.
114

Transcription regulation of the class II alcohol dehydrogenase 7 (ADH7)

Jairam, Sowmya January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The class IV alcohol dehydrogenase (ADH7, µ-ADH, σ-ADH) efficiently metabolizes ethanol and retinol. ADH7 is expressed mainly in the upper gastrointestinal tract with no expression in the liver unlike the other ADHs, and is implicated in various diseases including alcoholism, cancer and fetal alcohol syndrome. Genome wide studies have identified significant associations between ADH7 variants and alcoholism and cancer, but the causative variants have not been identified. Due to its association with two important metabolic pathways and various diseases, this dissertation is focused on studying ADH7 regulation and the effects of variants on this regulation using cell systems that replicate endogenous ADH7 expression. We identified elements regulating ADH7 transcription and observed differences in the effects of variants on gene expression. A7P-G and A7P-A, two promoter haplotypes differing in a single nucleotide at rs2851028, had different transcriptional activities and interacted with variants further upstream. A sequence located 12.5 kb upstream (7P10) can function as an enhancer. These complex interactions indicate that the effects of variants in the ADH7 regulatory elements depend on both sequence and cellular context, and should be considered in interpretation of the association of variants with alcoholism and cancer. The mechanisms governing the tissue-specific expression of ADH7 remain unexplained however. We identified an intergenic region (iA1C), located between ADH7 and ADH1C, having enhancer blocking activity in liver-derived HepG2 cells. This enhancer blocking function was cell- and position- dependent with no activity seen in CP-A esophageal cells. iA1C had a similar effect on the ectopic SV40 enhancer. The CCCTC-binding factor (CTCF) bound iA1C in HepG2 cells but not in CP-A cells. Our results suggest that in liver-derived cells, iA1C blocks the effects of downstream ADH enhancers and thereby contributes to the cell specificity of ADH7 expression. Thus, while genetic factors determine level of ADH7 transcriptional activity, iA1C helps determine the cell specificity of transcription.
115

Kinetic Analysis of Primate and Ancestral Alcohol Dehydrogenases

Myers, Candace R. 29 November 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Seven human alcohol dehydrogenase genes (which encode the primary enzymes involved in alcohol metabolism) are grouped into classes based on function and sequence identity. While the Class I ADH isoenzymes contribute significantly to ethanol metabolism in the liver, Class IV ADH isoenzymes are involved in the first-pass metabolism of ethanol. It has been suggested that the ability to efficiently oxidize ethanol occurred late in primate evolution. Kinetic data obtained from the Class I ADH isoenzymes of marmoset and brown lemur, in addition to data from resurrected ancestral human Class IV ADH isoenzymes, supports this proposal--suggesting that two major events which occurred during primate evolution resulted in major adaptations toward ethanol metabolism. First, while human Class IV ADH first appeared 520 million years ago, a major adaptation to ethanol occurred very recently (approximately 15 million years ago); which was caused by a single amino acid change (A294V). This change increases the catalytic efficiency of the human Class IV enzymes toward ethanol by over 79-fold. Secondly, the Class I ADH form developed 80 million years ago--when angiosperms first began to produce fleshy fruits whose sugars are fermented to ethanol by yeasts. This was followed by the duplication and divergence of distinct Class I ADH isoforms--which occurred during mammalian radiation. This duplication event was followed by a second duplication/divergence event which occurred around or just before the emergence of prosimians (some 40 million years ago). We examined the multiple Class I isoforms from species with distinct dietary preferences (lemur and marmoset) in an effort to correlate diets rich in fermentable fruits with increased catalytic capacity toward ethanol oxidation. Our kinetic data support this hypothesis in that the species with a high content of fermentable fruit in its diet possess greater catalytic capacity toward ethanol.
116

Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain

Soutar, M.P., Kim, W.Y., Williamson, Ritchie, Peggie, M., Hastie, C.J., McLauchlan, H., Snider, W.D., Gordon-Weeks, P.R., Sutherland, C. January 2010 (has links)
No / Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3alpha and GSK3beta, while a splice variant of GSK3beta (GSK3beta2), containing a 13 amino acid insert, is enriched in neurons. GSK3alpha and GSK3beta deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, beta-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3beta, yet normal in cortex lacking GSK3alpha). Furthermore, the neuron-enriched GSK3beta2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3beta1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3beta isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3beta splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3beta1 and GSK3beta2 are similar.
117

Identification, kinetic and structural characterization of small molecule inhibitors of aldehyde dehydrogenase 3a1 (Aldh3a1) as an adjuvant therapy for reversing cancer chemo-resistance

Parajuli, Bibek 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / ALDH isoenzymes are known to impact the sensitivity of certain neoplastic cells toward cyclophosphamides and its analogs. Despite its bone marrow toxicity, cyclophos-phamide is still used to treat various recalcitrant forms of cancer. When activated, cyclo-phosphamide forms aldophosphamide that can spontaneously form the toxic phospho-ramide mustard, an alkylating agent unless detoxified by ALDH isozymes to the carbox-yphosphamide metabolite. Prior work has demonstrated that the ALDH1A1 and ALDH3A1 isoenzymes can convert aldophosphamide to carboxyphosphamide. This has also been verified by over expression and siRNA knockdown studies. Selective small molecule inhibitors for these ALDH isoenzymes are not currently available. We hypothe-sized that novel and selective small molecule inhibitors of ALDH3A1 would enhance cancer cells’ sensitivity toward cyclophosphamide. If successful, this approach can widen the therapeutic treatment window for cyclophosphamides; permitting lower effective dos-ing regimens with reduced toxicity. An esterase based absorbance assay was optimized in a high throughput setting and 101, 000 compounds were screened and two new selective inhibitors for ALDH3A1, which have IC50 values of 0.2 µM (CB7) and 16 µM (CB29) were discovered. These two compounds compete for aldehyde binding, which was vali-dated both by kinetic and crystallographic studies. Structure activity relationship dataset has helped us determine the basis of potency and selectivity of these compounds towards ALDH3A1 activity. Our data is further supported by mafosfamide (an analog of cyclo-phosphamide) chemosensitivity data, performed on lung adenocarcinoma (A549) and gli-oblastoma (SF767) cell lines. Overall, I have identified two compounds, which inhibit ALDH3A1’s dehydrogenase activity selectively and increases sensitization of ALDH3A1 positive cells to aldophosphamide and its analogs. This may have the potential in improving chemotherapeutic efficacy of cyclophosphamide as well as to help us understand better the role of ALDH3A1 in cells. Future work will focus on testing these compounds on other cancer cell lines that involve ALDH3A1 expression as a mode of chemoresistance.

Page generated in 0.0526 seconds