51 |
Cholinergic Leukocytes in Sepsis and at the Neuroimmune Junction in the SpleenHoover, David B., Poston, Megan D., Brown, Stacy D., Lawson, Sarah E., Bond, Cherie E., Downs, Anthony M., Williams, David L., Ozment, Tammy R. 01 April 2020 (has links)
The spleen is a key participant in the pathophysiology of sepsis and inflammatory disease. Many splenocytes exhibit a cholinergic phenotype, but our knowledge regarding their cholinergic biology and how they are affected by sepsis is incomplete. We evaluated effects of acute sepsis on the spleen using the cecal ligation and puncture (CLP) model in C57BL/6 and ChATBAC-eGFP mice. Quantification of cholinergic gene expression showed that choline acetyltransferase and vesicular acetylcholine transporter (VAChT) are present and that VAChT is upregulated in sepsis, suggesting increased capacity for release of acetylcholine (ACh). High affinity choline transporter is not expressed but organic acid transporters are, providing additional mechanisms for release. Flow cytometry studies identified subpopulations of cholinergic T and B cells as well as monocytes/macrophages. Neither abundance nor GFP intensity of cholinergic T cells changed in sepsis, suggesting that ACh synthetic capacity was not altered. Spleens have low acetylcholinesterase activity, and the enzyme is localized primarily in red pulp, characteristics expected to favor cholinergic signaling. For cellular studies, ACh was quantified by mass spectroscopy using d4-ACh internal standard. Isolated splenocytes from male mice contain more ACh than females, suggesting the potential for gender-dependent differences in cholinergic immune function. Isolated splenocytes exhibit basal ACh release, which can be increased by isoproterenol (4 and 24 h) or by T cell activation with antibodies to CD3 and CD28 (24 h). Collectively, these data support the concept that sepsis enhances cholinergic function in the spleen and that release of ACh can be triggered by stimuli via different mechanisms.
|
52 |
Effects of Isoproterenol on IhERG during K+ changes in HEK293 cellsZhang, J., Shang, Lijun, Wang, T., Ni, Y., Ma, A. January 2017 (has links)
Yes / Introduction:The human ether-a-go-go related gene (hERG) encodes the pore forming protein which mediates the rapid delayed rectifier K+ current in the heart (IKr). Together with other ion channels hERG determines the cardiac action potential and regulates the heart beating. Dysfuction of the hERG ion channel will lead to acquired long QT syndrome (LQTS). Therefore, new drug candidates must pass the test for a potential inhibitory effect on the hERG current as a first step in a nonclinical testing strategy.
Arrhythmias in patients with LQTS are typically triggered during physical or emotional stress, suggesting a link between sympathetic stimulation and arrhythmias. It is well known that potassium level can affect the QT interval through affecting IhERG both in vivo and in vitro.In this study, we try to find out whether the trigger effect still exist when K+ changes violently in a short time period. In other words, whether the risk of TdP aggravate when patients suffer from acute water electrolyte balance disorder, which is a common symptom in hot weather.
Methods: HEK293 Cell line stably expressing hERG channel were cultured in DMEM supplemented with 10% of fetal bovine serum.Whole-cell patch-clamp method was applied for ionic current recordings. The compositions of pipette was (in mM) 125 KCl, 5 MgCl2, 5 EGTA-K, 10 HEPES-K and 5 Na-ATP adjusted to pH 7.2 with KOH. The bath solutions for recording the IhERG currents was 136 NaCl, 4 KCl, 1 MgCl2, 10 HEPES-Na, 1.8 CaCl2 and 10 glucose, pH 7.4 with NaOH. The low extracellular K+ solution was 115 KCl, 5 MgCl2, 5 EGTA-K, 10 HEPES-K and 10 Na-ATP adjusted to pH 7.2 with NaOH. Patch-clamp experiments were performed at room temperature (22 ± 1°C). The recording of low K+ current was carried out immediately after the original normal K+ solution has been totally replaced. Isoproterenol (ISO) 100nM was added into both kinds of K+ solution to apply the effect of β1-AR stimulation.
Results: We found that low K+ solution increased IhERG from 907.39±18.68to 1620.08±249.44pA(n=30,P<0.05); Low K+also shifted the I-V curve to the left. IC50 in control is 10.31±5.52 mV, low K+ is -6.15±1.58 mV. When adding ISO 100nM to extracellular solution, same effects were shown for both groups.ISO decreased Imax for both group. In control group, Imax reduced from 907.39±18.68to493.16±54.41pA (n=30, P<0.01), while in low K+ group, I max decreased Imax from 1620.08±29.44to 488.48±81.87pA(n=30,P<0.05). At the same time, ISO shifts the I-V curve to the right for the control group and shift the curve to the left for low K+ group. IC50 in control when added ISO is 22.25±3.80 mV, while IC50 in low K+ group after adding 100nM ISO is -31.00±5.73 mV. Conclusion: The results from this study is contradict to those in our previous study where low K+ combined with ISO can lead to temporarily increase of QT interval in vivo.It is reported that an increase in net outward repolarizing current, due to a relatively large increase of IKs, is responsible for the changes of QT interval in response to beta-adrenergic stimulation in vivo(2). Therefore future studies need to co-transfect IKs channel to confirm this.
References:
1. Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, et al. Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. The Journal of clinical investigation. 2009;119(9):2745- 57.
2. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. Journal of the American College of Cardiology. 2000;35(3):778-86.
|
53 |
Influência do sistema nervoso simpático na periodontite induzida e em glândula salivar de ratosMartins, Luana Galvão [UNESP] 29 June 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-06-29Bitstream added on 2014-06-13T19:15:37Z : No. of bitstreams: 1
martins_lg_me_sjc.pdf: 695176 bytes, checksum: fb089e33ad4b62aa9c5866bfb90390b7 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / A ação de beta-bloqueadores na melhoria da qualidade óssea e sua ação anti-inflamatória embasam a hipótese de que a modulação simpática pode influenciar a evolução da doença periodontal (DP). Estudos demonstram relação entre disfunção salivar e DP; no entanto, os efeitos da DP nas glândulas salivares, cuja secreção é controlada pelo sistema nervoso autônomo, são pouco estudados. Objetivou-se analisar os efeitos do bloqueio e da ativação de receptores beta-adrenérgicos na reabsorção alveolar na DP em ratos, assim como os efeitos da DP, associada ou não a tratamento adrenérgico, nas glândulas salivares. Foram utilizados 40 ratos divididos em quatro grupos: (1) Grupo Propranolol 0,1mg/Kg com indução de DP; (2) Grupo Isoproterenol 0,75mg/Kg e DP; (3) Grupo Controle sem DP, com administração solução fisiológica ; (4) Grupo Controle com DP, com administração solução fisiológica. Depois de 14 dias de tratamento, ocorreu a eutanásia. Removeram-se as hemimandíbulas e as glândulas submandibulares e sublinguais para análise. O suporte e a perda óssea alveolar foram determinados radiográfica e macroscopicamente. As glândulas foram pesadas, medidas e submetidas à preparação de rotina para coloração com hematoxilina e eosina e Alcian Blue. Avaliou-se histomorfometricamente a área de ácinos, ductos e a vacuolização celular. Após estatística (p<0,05), verificou-se menor suporte e maior perda alveolar na presença de ligadura e maior perda alveolar em animais com tratados com isoproterenol. O isoproterenol aumentou significantemente peso e dimensões glandulares, reduziu área ductal e vacuolização, e aumentou área acinar na submandibular. Propranolol apenas reduziu vacuolização em relação ao controle com DP, e as demais comparações não foram estatisticamente significantes... / The action of beta-blockers in the improvement of bone quality and their anti-inflammatory actions base the hypothesis that sympathetic nervous system modulation can influence periodontal disease (PD). Studies demonstrate a relationship between salivary dysfunction and PD; however, there are few studies about the effects of PD in salivary glands, whose secretion is controlled by the autonomic nervous system. The aim of this study was to analyze the effects of the blockade and of the activation of beta-adrenergic receptors in alveolar resorption in PD in rats, as well as the effects of PD, associated or not to adrenergic treatment, in salivary glands. Forty rats were divided into four groups: (1) group Propranolol 0.1mg/Kg with PD induction; (2) group Isoproterenol 0.75mg/Kg and PD; (3) group Control without PD, which received saline; (4) group Control with PD, which also received saline. After 14 days of treatment, euthanasia occurred. Hemimandibles and submandibular and sublingual glands were removed for analysis. Alveolar bone support and alveolar bone loss were evaluated by radiographic and macroscopic analysis. Gland weight and dimensions were measured, and then the samples were submitted to routine preparation for hematoxilin and eosin and Alcian blue stainings. Acinar and ductal area and cellular vacuolization were histomorphometrically evaluated. After statistical analysis (p <0.05), less alveolar bone support and larger alveolar loss were verified in animals with ligatures for PD induction and larger alveolar loss were also verified in rats treated with isoproterenol. Isoproterenol also increased significantly glandular weight, size and acinar area, and reduced ductal area and cellular vacuolization in submandibular glands. Group Propranolol presented less vacuolization than group Control with DP... (Complete abstract click electronic access below)
|
54 |
Electrophysiology and Arrhythmogenesis in the Human Right Ventricular Outflow TractAras, Kedar, Gams, Anna, Faye, Ndeye R., Brennan, Jaclyn, Goldrick, Katherine, Li, Jinghua, Zhong, Yishan, Chiang, Chia-Han, Smith, Elizabeth H., Poston, Megan D., Chivers, Jacqueline, Hanna, Peter, Mori, Shumpei, Ajijola, Olujimi A., Shivkumar, Kalyanam, Hoover, Donald B., Viventi, Jonathan 01 March 2022 (has links)
BACKGROUND: Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. METHODS: We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. RESULTS: We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (=0.003), whereas acetylcholine (100 μM) stimulation alone had no effect on action potential duration at 80% repolarization or premature ventricular contractions. However, acetylcholine treatment after isoproterenol stimulation reduced the incidence of premature ventricular contractions (=0.034) and partially reversed action potential duration at 80% repolarization shortening (=0.029). Immunolabeling of RVOT (n=4) confirmed the presence of cholinergic marker VAChT (vesicular acetylcholine transporter) in the region. Rapid pacing revealed RVOT susceptibility to both concordant and discordant alternans. Investigation into transmural arrhythmia dynamics showed that arrhythmia wave fronts and phase singularities (rotors) were relatively more organized in the endocardium than in the epicardium (=0.006). Moreover, there was a weak but positive spatiotemporal autocorrelation between epicardial and endocardial arrhythmic wave fronts and rotors. Transcriptome analysis (n=10 hearts) suggests a trend that MAPK (mitogen-activated protein kinase) signaling, calcium signaling, and cGMP-PKG (protein kinase G) signaling are among the pathways that may be enriched in the male RVOT, whereas pathways of neurodegeneration may be enriched in the female RVOT. CONCLUSIONS: Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.
|
55 |
Role and Regulation of Fat Specific Protein (FSP27) in Lipolysis in 3T3-L1 Adipocytes: A DissertationRanjit, Srijana 27 May 2010 (has links)
The alarming rate of increase in incidence and prevalence of the type 2 diabetes mellitus has prompted intense research on understanding the pathogenesis of the type 2 diabetes. It is observed that the development of type 2 diabetes is preceded by a state of insulin resistance and obesity. Previous studies have suggested that the obesity induced insulin resistance may be mediated by elevated levels of circulating free fatty acids (FFAs). The increase in circulating levels of FFAs may be contributed by the release of FFAs from stored triglycerides (TG) in adipocytes via lipolysis. It is hypothesized that the decrease in levels of circulating FFAs by sequestration and storage of FFAs in adipocytes may prevent deleterious effects of FFAs on insulin sensitivity. Recently our lab and others have shown that the storage of TG in adipocytes is promoted by a novel protein, Fat Specific Protein 27 (FSP27). Although, these studies also revealed FSP27 to be a lipid droplet associated protein that suppresses lipolysis to enhance TG accumulation in adipocytes, the role of FSP27 in lipolysis remains largely undetermined. Therefore, this study investigates the role and regulation of FSP27 in adipocytes in both the basal state, as well as during lipolysis.
The studies presented here show FSP27 to be a remarkably short-lived protein (half-life=15 min) due to its rapid ubiquitination and proteasomal degradation. Thus, I tested the hypothesis that lipolytic agents like the cytokine, TNF-α and the catecholamine isoproterenol modulate FSP27 protein levels to regulate FFA release. Consistent with this concept, TNF-α markedly decreased FSP27 mRNA and protein along with lipid droplet size as it increased lipolysis in cultured adipocytes. Similarly, FSP27 depletion using siRNA mimicked the effect of TNF-α to enhance lipolysis, while maintaining stable FSP27 protein levels by expression of HA epitope-tagged FSP27 blocked TNF-α mediated lipolysis. In contrast, the robust lipolytic action of isoproterenol is paradoxically associated with increases in FSP27 protein and a delayed degradation rate that corresponds to decreased ubiquitination. This catecholamine-mediated increase in FSP27 abundance, probably a feedback mechanism to restrain excessive lipolysis by catecholamines, is mimicked by forskolin or 8-Bromo-cAMP treatment, and prevented by Protein Kinase A (PKA) inhibitor KT5720 or PKA depletion using siRNA. These results show that isoproterenol stabililizes FSP27 via the canonical PKA pathway and increased cAMP levels. However, the work presented here also suggests that FSP27 does not get phosphorylated in response to isoproterenol treatment, and the stabilization of FSP27 is independent of isoproterenol mediated lipolysis.
The data presented in this thesis not only identifies the regulation of FSP27 as an important intermediate in mechanism of lipolysis in adipocytes in response to TNF-α and isoproterenol, but also suggests that FSP27 may be a possible therapeutic target to modulate lipolysis in adipocytes.
|
56 |
Relaxation of Isolated Human Myometrial Muscle by beta2-Adrenergic Receptors but Not beta1-Adrenergic ReceptorsLiu, Ying L., Nwosu, Uchenna C., Rice, P. J. 01 October 1998 (has links)
OBJECTIVE: Human myometrium contains both beta1-adrenergic and beta2-adrenergic receptors. This study was designed to assess the importance of each beta-adrenergic receptor subtype in relaxation of human myometrial muscle strips. STUDY DESIGN: Radioligand binding studies were used to establish the presence of each beta-adrenergic receptor subtype, whereas highly selective beta1-antagonists and beta2-antagonists were used to assess the contribution of beta-adrenergic receptor subtypes to myometrial relaxation after exposure to (-)-isoproterenol. RESULTS: Membranes prepared from myometrium contained 82% +/- 4% beta2-adrenergic receptors. After contraction produced by exposure to potassium chloride (35 mmol/L), isoproterenol produced relaxation with half maximal effect at 0.02 micromol/L and a maximal relaxation of 52% +/- 3%. Beta1-antagonist CGP-20712A had no significant effect, whereas beta2-antagonist ICI-118551 produced a characteristic rightward shift of the isoproterenol concentration-relaxation relationship. CONCLUSIONS: Although both beta1-adrenergic receptors and beta2-adrenergic receptors are present in human myometrial tissue at term, relaxation by nonselective beta-agonist isoproterenol is mediated exclusively by beta2-adrenergic receptors.
|
Page generated in 0.0544 seconds