• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 30
  • 22
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 27
  • 26
  • 21
  • 21
  • 17
  • 16
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Optimizing array processing on complex I/O stacks usingindices and data summarization

Xing, Haoyuan January 2021 (has links)
No description available.
112

Supporting multiple data stores based applications in cloud environments / Soutenir les applications utilisant des bases de données multiples dans un environnement Cloud Computing

Sellami, Rami 05 February 2016 (has links)
Avec l’avènement du cloud computing et des big data, de nouveaux systèmes de gestion de bases de données sont apparus, connus en général sous le vocable systèmes NoSQL. Par rapport aux systèmes relationnels, ces systèmes se distinguent par leur absence de schéma, une spécialisation pour des types de données particuliers (documents, graphes, clé/valeur et colonne) et l’absence de langages de requêtes déclaratifs. L’offre est assez pléthorique et il n’y a pas de standard aujourd’hui comme peut l’être SQL pour les systèmes relationnels. De nombreuses applications peuvent avoir besoin de manipuler en même temps des données stockées dans des systèmes relationnels et dans des systèmes NoSQL. Le programmeur doit alors gérer deux (au moins) modèles de données différents et deux (au moins) langages de requêtes différents pour pouvoir écrire son application. De plus, il doit gérer explicitement tout son cycle de vie. En effet, il a à (1) coder son application, (2) découvrir les services de base de données déployés dans chaque environnement Cloud et choisir son environnement de déploiement, (3) déployer son application, (4) exécuter des requêtes multi-sources en les programmant explicitement dans son application, et enfin le cas échéant (5) migrer son application d’un environnement Cloud à un autre. Toutes ces tâches sont lourdes et fastidieuses et le programmeur risque d’être perdu dans ce haut niveau d’hétérogénéité. Afin de pallier ces problèmes et aider le programmeur tout au long du cycle de vie des applications utilisant des bases de données multiples, nous proposons un ensemble cohérent de modèles, d’algorithmes et d’outils. En effet, notre travail dans ce manuscrit de thèse se présente sous forme de quatre contributions. Tout d’abord, nous proposons un modèle de données unifié pour couvrir l’hétérogénéité entre les modèles de données relationnelles et NoSQL. Ce modèle de données est enrichi avec un ensemble de règles de raffinement. En se basant sur ce modèle, nous avons défini notre algèbre de requêtes. Ensuite, nous proposons une interface de programmation appelée ODBAPI basée sur notre modèle de données unifié, qui nous permet de manipuler de manière uniforme n’importe quelle source de données qu’elle soit relationnelle ou NoSQL. ODBAPI permet de programmer des applications indépendamment des bases de données utilisées et d’exprimer des requêtes simples et complexes multi-sources. Puis, nous définissons la notion de bases de données virtuelles qui interviennent comme des médiateurs et interagissent avec les bases de données intégrées via ODBAPI. Ce dernier joue alors le rôle d’adaptateur. Les bases de données virtuelles assurent l’exécution des requêtes d’une façon optimale grâce à un modèle de coût et un algorithme de génération de plan d’exécution optimal que nous définis. Enfin, nous proposons une approche automatique de découverte de bases de données dans des environnements Cloud. En effet, les programmeurs peuvent décrire leurs exigences en termes de bases de données dans des manifestes, et grâce à notre algorithme d’appariement, nous sélectionnons l’environnement le plus adéquat à notre application pour la déployer. Ainsi, nous déployons l’application en utilisant une API générique de déploiement appelée COAPS. Nous avons étendue cette dernière pour pouvoir déployer les applications utilisant plusieurs sources de données. Un prototype de la solution proposée a été développé et mis en œuvre dans des cas d'utilisation du projet OpenPaaS. Nous avons également effectué diverses expériences pour tester l'efficacité et la précision de nos contributions / The production of huge amount of data and the emergence of Cloud computing have introduced new requirements for data management. Many applications need to interact with several heterogeneous data stores depending on the type of data they have to manage: traditional data types, documents, graph data from social networks, simple key-value data, etc. Interacting with heterogeneous data models via different APIs, and multiple data stores based applications imposes challenging tasks to their developers. Indeed, programmers have to be familiar with different APIs. In addition, the execution of complex queries over heterogeneous data models cannot, currently, be achieved in a declarative way as it is used to be with mono-data store application, and therefore requires extra implementation efforts. Moreover, developers need to master and deal with the complex processes of Cloud discovery, and application deployment and execution. In this manuscript, we propose an integrated set of models, algorithms and tools aiming at alleviating developers task for developing, deploying and migrating multiple data stores applications in cloud environments. Our approach focuses mainly on three points. First, we provide a unified data model used by applications developers to interact with heterogeneous relational and NoSQL data stores. This model is enriched by a set of refinement rules. Based on that, we define our query algebra. Developers express queries using OPEN-PaaS-DataBase API (ODBAPI), a unique REST API allowing programmers to write their applications code independently of the target data stores. Second, we propose virtual data stores, which act as a mediator and interact with integrated data stores wrapped by ODBAPI. This run-time component supports the execution of single and complex queries over heterogeneous data stores. It implements a cost model to optimally execute queries and a dynamic programming based algorithm to generate an optimal query execution plan. Finally, we present a declarative approach that enables to lighten the burden of the tedious and non-standard tasks of (1) discovering relevant Cloud environments and (2) deploying applications on them while letting developers to simply focus on specifying their storage and computing requirements. A prototype of the proposed solution has been developed and implemented use cases from the OpenPaaS project. We also performed different experiments to test the efficiency and accuracy of our proposals
113

Letištní terminál / Airport terminal

Mika, Václav Unknown Date (has links)
The diploma thesis deals with design and structural assesment of the steel airport terminal in Prag-Ruzyne. The project is designed in two options. The dimensions of the rectagular floor plan are 79,3 x 98,65 m. The height of the building in highest point is 21,5 m. The airport terminal contains 9 main frames spaced by 9 m. The cladding of the roof and the side walls is designed by sendwich panels. The face wall is made by glass facade system.
114

Robust Query Optimization for Analytical Database Systems

Hertzschuch, Axel 09 August 2023 (has links)
Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION 107 BIBLIOGRAPHY 109 LIST OF FIGURES 117 LIST OF TABLES 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . . . . . 129
115

Towards a Taxonomy of Aspect-Oriented Programming.

Hankerson, Mario Bernard 13 December 2003 (has links) (PDF)
As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested.
116

Robust Query Optimization for Analytical Database Systems

Hertzschuch, Axel 25 September 2023 (has links)
Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 129
117

Category neutrality: A type-logical investigation

Whitman, Philip Neal 02 July 2002 (has links)
No description available.
118

Real-time Business Intelligence through Compact and Efficient Query Processing Under Updates

Idris, Muhammad 05 March 2019 (has links) (PDF)
Responsive analytics are rapidly taking over the traditional data analytics dominated by the post-fact approaches in traditional data warehousing. Recent advancements in analytics demand placing analytical engines at the forefront of the system to react to updates occurring at high speed and detect patterns, trends, and anomalies. These kinds of solutions find applications in Financial Systems, Industrial Control Systems, Business Intelligence and on-line Machine Learning among others. These applications are usually associated with Big Data and require the ability to react to constantly changing data in order to obtain timely insights and take proactive measures. Generally, these systems specify the analytical results or their basic elements in a query language, where the main task then is to maintain query results under frequent updates efficiently. The task of reacting to updates and analyzing changing data has been addressed in two ways in the literature: traditional business intelligence (BI) solutions focus on historical data analysis where the data is refreshed periodically and in batches, and stream processing solutions process streams of data from transient sources as flows of data items. Both kinds of systems share the niche of reacting to updates (known as dynamic evaluation), however, they differ in architecture, query languages, and processing mechanisms. In this thesis, we investigate the possibility of a reactive and unified framework to model queries that appear in both kinds of systems.In traditional BI solutions, evaluating queries under updates has been studied under the umbrella of incremental evaluation of queries that are based on the relational incremental view maintenance model and mostly focus on queries that feature equi-joins. Streaming systems, in contrast, generally follow automaton based models to evaluate queries under updates, and they generally process queries that mostly feature comparisons of temporal attributes (e.g. timestamp attributes) along with comparisons of non-temporal attributes over streams of bounded sizes. Temporal comparisons constitute inequality constraints while non-temporal comparisons can either be equality or inequality constraints. Hence these systems mostly process inequality joins. As a starting point for our research, we postulate the thesis that queries in streaming systems can also be evaluated efficiently based on the paradigm of incremental evaluation just like in BI systems in a main-memory model. The efficiency of such a model is measured in terms of runtime memory footprint and the update processing cost. To this end, the existing approaches of dynamic evaluation in both kinds of systems present a trade-off between memory footprint and the update processing cost. More specifically, systems that avoid materialization of query (sub)results incur high update latency and systems that materialize (sub)results incur high memory footprint. We are interested in investigating the possibility to build a model that can address this trade-off. In particular, we overcome this trade-off by investigating the possibility of practical dynamic evaluation algorithm for queries that appear in both kinds of systems and present a main-memory data representation that allows to enumerate query (sub)results without materialization and can be maintained efficiently under updates. We call this representation the Dynamic Constant Delay Linear Representation (DCLRs).We devise DCLRs with the following properties: 1) they allow, without materialization, enumeration of query results with bounded-delay (and with constant delay for a sub-class of queries), 2) they allow tuple lookup in query results with logarithmic delay (and with constant delay for conjunctive queries with equi-joins only), 3) they take space linear in the size of the database, 4) they can be maintained efficiently under updates. We first study the DCLRs with the above-described properties for the class of acyclic conjunctive queries featuring equi-joins with projections and present the dynamic evaluation algorithm called the Dynamic Yannakakis (DYN) algorithm. Then, we present the generalization of the DYN algorithm to the class of acyclic queries featuring multi-way Theta-joins with projections and call it Generalized DYN (GDYN). We devise DCLRs with the above properties for acyclic conjunctive queries, and the working of DYN and GDYN over DCLRs are based on a particular variant of join trees, called the Generalized Join Trees (GJTs) that guarantee the above-described properties of DCLRs. We define GJTs and present algorithms to test a conjunctive query featuring Theta-joins for acyclicity and to generate GJTs for such queries. We extend the classical GYO algorithm from testing a conjunctive query with equalities for acyclicity to testing a conjunctive query featuring multi-way Theta-joins with projections for acyclicity. We further extend the GYO algorithm to generate GJTs for queries that are acyclic.GDYN is hence a unified framework based on DCLRs that enables processing of queries that appear in streaming systems as well as in BI systems in a unified main-memory model and addresses the space-time trade-off. We instantiate GDYN to the particular case where all Theta-joins involve only equalities and inequalities and call this instantiation IEDYN. We implement DYN and IEDYN as query compilers that generate executable programs in the Scala programming language and provide all the necessary data structures and their maintenance and enumeration methods in a continuous stream processing model. We evaluate DYN and IEDYN against state-of-the-art BI and streaming systems on both industrial and synthetically generated benchmarks. We show that DYN and IEDYN outperform the existing systems by over an order of magnitude efficiency in both memory footprint and update processing time. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
119

Cubulations de variétés hyperboliques compactes / Cubulations of closed hyperbolic manifolds

Dufour, Guillaume 23 March 2012 (has links)
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée. / This thesis contributes to the study of geometric actions of word-hyperbolic groups on finite dimensional CAT(0) cube complexes. We are mainly interested in the case of fundamental groups of closed hyperbolic manifolds. The philosophy coming from pioneer work of M. Sageev is that a hyperbolic group with sufficiently many quasi-convex codimension one subgroups acts geometrically on a finite dimensional CAT(0) cube complex. We prove a precise criterion for cubulation in the case of closed hyperbolic manifolds, by constructing spaces with walls quasi-isometric to real hyperbolic space. We next focus on the case of three dimensional closed hyperbolic manifolds which are virtually fibered over the circle. In this setting, we use a construction of incompressibly immersed cut-and-cross-join surfaces due to D. Cooper, D. Long and A. Reid that yields surface subgroups of the fundamental group G of the 3-manifold M. By expanding on work of J. Masters and using the structure of the Cannon-Thurston map, we are able to build many quasi-convex surface subgroups of G whose limits sets may be used to separate any pair of distinct points in the boundary of the universal cover of M. As a consequence, G acts geometrically on a finite dimensional CAT(0) cube complex. D. Wise then asks if it is possible that G acts both geometrically and virtually co-specially (in the sense of F. Haglund and D. Wise) on a CAT(0) cube complex. A positive answer would solve the long-standing conjectures that G is large and M has infinite virtual first Betti number. We then explain why finding a virtually embedded cut-and-cross-join surface in a finite cover of M would be enough to solve this problem. Finally, we give some algebraic and then geometric and cohomological sufficient conditions for a given cut-and-cross-join surface to virtually embed.
120

Terminál mezinárodního letiště Brno / Terminal of Brno International Airport

Jančar, Ondřej January 2019 (has links)
The aim of the diploma thesis is make a structural design of load carrying steel structure of terminal international airport Brno. The project is designed in two options. The height of the building in highest point is 15 m. The object has rectangular ground floor plan with proportions of 80 x 40 m. For selected option the check of joints and anchorage is performed as well as the design drawings. The object was designed according to currently valid standarts to the ultimate limit states and serviceability limit states.

Page generated in 0.0471 seconds