1 |
Sobre rigidez de métricas quasi-Einstein / On rigidity of quasi-Einstein metricsBorges, Laena Furtado 03 March 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-17T21:10:56Z
No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:53:29Z (GMT) No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-20T13:53:29Z (GMT). No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will present some concepts of quasi-Einstein metrics. From this, we will enunciate and demonstrate rigidity results for quasi-Einstein metrics until we have enough material to demonstrate a stiffness result for quasi-Einstein metrics of dimension two. Finally, we will give some concepts of Kähler metrics, prove a theorem and finally demonstrate a corollary that connects the main theorem of our work with Kähler metrics. / Nesse trabalho, apresentaremos alguns conceitos de métricas quasi-Einstein. A partir disso, enunciaremos e demonstraremos resultados de rigidez para métricas quasi-Einstein, até que tenhamos material suficiente para a demonstração de um resultado de rigidez para métricas quasi-Einstein em dimensão dois. Por fim, daremos alguns conceitos de métricas kähler, provaremos um teorema e por fim demonstraremos um corolário que conecta o teorema principal do nosso trabalho com as métricas Kähler.
|
2 |
K-stabilité et variétés kähleriennes avec classe transcendante / K-stability and Kähler manifolds with transcendental cohomology classSjöström Dyrefelt, Zakarias 15 September 2017 (has links)
Dans cette thèse nous étudions des questions de stabilité géométrique pour des variétés kähleriennes à courbure scalaire constante (cscK) avec classe de cohomologie transcendante. En tant que point de départ, nous introduisons des notions généralisées de K-stabilité, étendant une image classique introduite par G. Tian et S. Donaldson dans le cadre des variétés polarisées. Contrairement à la théorie classique, ce formalisme nous permet de traiter des questions de stabilité pour des variétés kähleriennes compactes non projectives ainsi que des variétés projectives munis de polarisations non rationnelles. Dans une première partie, nous étudions les rayons sous-géodésiques associés aux configurations tests dites cohomologiques, objets introduitent dans cette thèse. Nous établissons ainsi des formules fondamentales pour la pente asymptotique d'une famille de fonctionnelles d'énergie, le long de ces rayons géodésiques. Ceci est lié au couplage de Deligne en géométrie algébrique, et ce formalise permet en particulier de comprendre le comportement asymptotique d'un grand nombre de fonctionnelles d'énergie classiques en géométrie kählerienne, y compris la fonctionnelle d'Aubin-Mabuchi et la K-énergie. En particulier, ceci fournit une approche pluripotentielle naturelle pour étudier le comportement asymptotique des fonctionnelles d'énergie dans la théorie de K-stabilité. En s'appuyant sur cette première partie, nous démontrons ensuite un certain nombre de résultats de stabilité pour les variétés cscK. Tout d'abord, nous prouvons que les variétés cscK sont K-semistables dans notre sens généralisé, prolongeant ainsi un résultat dû à Donaldson dans le cadre projectif. En supposant que le groupe d'automorphisme est discret, nous montrons en outre que la K-stabilité est une condition nécessaire pour l'existence des métriques cscK sur des variétés kähleriennes compactes. Plus précisément, nous prouvons que la coercivité de la K-énergie implique la K-stabilité uniforme, ainsi généralisant des résultats de Mabuchi, Stoppa, Berman, Dervan et Boucksom-Hisamoto-Jonsson pour des variétés polarisées. Cela donne une preuve nouvelle et plus générale d'une direction de la conjecture Yau-Tian-Donaldson dans ce contexte. L'autre direction (suffisance de K-stabilité) est considérée comme l'un des problèmes ouverts les plus importants en géométrie kählerienne. Nous donnons enfin des résultats partiels dans le cas des variétés kähleriennes compactes qui admettent des champs de vecteurs holomorphes non triviaux. Nous discutons également autour des perspectives et applications de notre théorie de K-stabilité pour les variétés kähleriennes avec classe transcendante, notamment à l'étude des lieux de stabilité dans le cône de Kähler. / In this thesis we are interested in questions of geometric stability for constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact Kähler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact Kähler manifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in Kähler geometry (including Aubin's J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK manifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the automorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature Kähler metrics on compact Kähler manifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K-stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M. Jonsson for polarized manifolds. This gives a new and more general proof of one direction of the Yau-Tian-Donaldson conjecture in this setting. The other direction (sufficiency of K-stability) is considered to be one of the most important open problems in Kähler geometry. We finally give some partial results in the case of compact Kähler manifolds admitting non-trivial holomorphic vector fields, discuss some further perspectives and applications of the theory of K-stability for compact Kähler manifolds with transcendental cohomology class, and ask some questions related to stability loci in the Kähler cone.
|
Page generated in 0.0531 seconds