• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solceller på Södra Älvsborgs Sjukhus : för att minska andelen inköpt elenergi / Solar Photovoltaic on Södra Älvsborgs Hospital : to reduce the part of purchased electricity

Al-Mashhadani, Musaab Aukasha Abdulmuniem, Pak, Sergey January 2018 (has links)
Projektets avsikt har varit att undersöka i vilken omfattning solceller på tak kan gynna Västfastigheters energimål. Examensarbetet infördes av Västfastigheter i Borås då de har ett energimål till år 2030, vilket är att halvera den specifika köpta energi jämfört med motsvarande värden från 1995-talet. Syftet med detta arbete var att ge Västfastigheter ett skriftligt underlag om huruvida appliceringen av solceller på ett tak ger en vinst inom energitekniska och ekonomiska perspektiv samt vilka risker som kan förekomma, speciellt när det handlar om medicinsk verksamhet. Huvudmålet med examensarbetet har varit att undersöka, med hjälp av litteraturstudier och beräkningar om användningen av solceller kan minska Södra Älvsborg Sjukhusets (som förvaltas av Västfastigheter) specifik köpta elenergin genom att mata solcellsproduktionen direkt på nätet (fall 1) eller att ladda batteribanken i UPS-anläggningen för byggnad 14 för att undergå växelriktarens förluster (fall 2). Resultatet i fall 1 visar att en solcellsanläggning skulle kunna producera cirka 82 MWh per år i Borås medan den totala elkonsumtionen för byggnad 14 är idag 1 252 MWh. Det visar sig att solcellsproduktionen endast täcker 6,5 % av totala elkonsumtionen. Detta resulterar med att större takyta krävs vilket i sin tur skapar en större anläggning för att täcka en större del av elkonsumtionen för varje månad på året.    Resultatet från fall 2 säger att ladda batteripaketet med solcellsproduktionen genom UPSanläggningens likspänningssida inte blir en lämplig lösning på grund av att funktionen hos en UPS-anläggning är att batterierna alltid ska vara full laddade för att de ska kunna träda in i händelse av ett strömavbrott.  En utredning om hur stor effektförlusterna i UPS-anläggningen i byggnad 14 (se bilaga 6) är, och hur stor andel av denna som solcellsanläggningen kan täcka togs därför som ett alternativ till uppdraget som Västfastigheter gav i uppdrag.    Mätningar på den momentana ingående och utgående effekten i UPS-anläggningen för byggnad 14 resulterade med en förlust på totalt 5 kW vilket motsvarade 3 600 kWh per månad då dygnsvariationen inte är lika stor på UPS-nätet som övriga elförbrukningen. Figur 13 visar att förlusten kan ersättas med stor marginal med överskottsel alla månader förutom januari, februari, november och december. Men på grund av mycket elöverskott under sommar månaderna så får man igen energin och kostnaderna för månaderna som kompenserades med köpt el energi.      Den ekonomiska kalkylen säger att återbetalningstiden blir 12,5 år och därefter blir solcellsanläggningen ekonomisk lönsam. Dock så hinner anläggningen i självaverket inte generera inköpsfri elenergi under åren tills 2031 om anläggningen tas i drift år 2019 då Västfastigheters energimål var satt till år 2030. / The thesis work was introduced by Västfastgheter in Borås since they had an energy goal to accomplish, which is to reduce the specific purchased energy by half compared to 1970 years values. The purpose of this project was to examine if the photovoltaic cells will service the energy goal of Västfastigheter.   The purpose of this work was also to give the Västfastigheter a proof that the application of photovoltaic cells on a roof can give a profit in terms of technological and economical energy perspectives as well as the risks that may occur especially when it comes to medical occupation. The main objective of this project was to use the studies, theories and calculations to investigate if the solar cells have the potential to reduce the Södra Älvsborg Hospital's (managed by Västfastigheter) specific purchased electricity by feeding the solar cell production directly on the main powerline (case 1) or charging the battery bank in the UPS building for building 14 (case 2). The result in case 1 shows that the solar cell system produces about 82 MWh per year in Borås while the total electricity consumption for building 14 is 1 252 MWh today. It turns out that solar cell total production only covers 6.5% of electricity consumption. This indicates that larger roof space is required, which in turn creates a larger facility to cover a larger proportion of electricity consumption for each month of the year. However, the profitability calculation and the repayment time are not affected   The result of Case 2 shows that charging the battery pack with the solar cell production through the DC-power side of the UPS system does not result in an appropriate solution because the function of a UPS system is that the batteries should always be fully charged to enable them to enter in the event of a power failure.  An investigation of how much power loss UPS machines in building 14 (see Appendix 6) have and how much of this solar cell facility can cover was therefore taken as an alternative to the assignment that Västfastigheter commissioned.    Measurements of the instantaneous input and output power of the UPS building for Building 14 resulted in a loss of a total of 5 kW, which corresponded to 3 600 kWh for each month constant as the daily variation is not as high on the UPS network as the electricity consumption. Figure 13 shows that the loss can be replaced by large margin surpluses every month except January, February, November and December. But due to a lot of surplus in the summer months, you get the energy and costs for the months that were compensated with purchased electricity.   The final Economic calculations say that the repayment period will be 12.5 years and after that, the solar cell system will be economically profitable. However, the photovoltaic plant in the company itself will not generate unprocessed electricity energy over the years until 2031 if the solar cell facility will start producing electricity from year 2019 when the Västfastigheters energy goal were set by 2030.
2

Utredning av förutsättningar för att direktjorda processnätet på ett pappersbruk

Persson, Klas January 2006 (has links)
<p>För att öka skyddet mot elektriska fält i processnätet på Stora Enso Skoghalls bruk utreds det i denna rapport om det går att direktjorda processnätet som i dagens läge endast är skyddsjordat. Eftersom det tidigare endast funnits skyddsjord vill företaget veta om kabeldimensioneringen är tillräcklig så att de skydd man har mot kortslutningsströmmar även fungerar i ett direktjordat nät. I ett direktjordat nät blir den minsta kortslutningsströmmen cirka gånger mindre än icke direktjordat nät då kortslutning kan ske mellan fas och nolla (fasspänning). Nollan finns inte i ett icke direktjordat nät och kablarna är kan alltså vara för långa eller för klena så att en fasspänning inte klarar att driva tillräckligt stor ström vid kortslutning genom kabelns impedans förr att skydden skall lösa ut. Eftersom en nydragning av alla de kilometervis utlagda kablarna skulle bli en så ofantligt kostnad och att tiden för stoppet av processen skulle bli för lång är detta inte ett alternativ. Den här utredningen kommer att visa maximala kabellängden mellan de olika ställverken och motorerna i det befintliga nätet för att man skall kunna direktjorda det.</p> / <p>To increase the protection against electrical fields in the distribution net on Stora Enso’s mill in Skoghall it will be investigated if it’s possible to use direct earth instead of only protective earth as of today. Because the net only has protective earth the company wants to know if the dimensions of the cables are enough to meet the lesser shortcut voltage in a net with direct earth. The smallest shortcut current when using direct earth occurs between one phase and the zero and will be aproximately times less than when using non direct earth where there is not a zero and the shortcut can onlyu occur between two phases. This means that when building a non direct eart net you can use longer or thinner cables with more resistance than you could using direct earth. New cables are not an alternative when the cost would be to great and the downtime of the machines would be too long. This inquiry will show the maximum cabel length from the different protections to the different engines can be if you want to use direct earth and be sure that the fuses will burn when an error occurs.</p>
3

Utredning av förutsättningar för att direktjorda processnätet på ett pappersbruk

Persson, Klas January 2006 (has links)
För att öka skyddet mot elektriska fält i processnätet på Stora Enso Skoghalls bruk utreds det i denna rapport om det går att direktjorda processnätet som i dagens läge endast är skyddsjordat. Eftersom det tidigare endast funnits skyddsjord vill företaget veta om kabeldimensioneringen är tillräcklig så att de skydd man har mot kortslutningsströmmar även fungerar i ett direktjordat nät. I ett direktjordat nät blir den minsta kortslutningsströmmen cirka gånger mindre än icke direktjordat nät då kortslutning kan ske mellan fas och nolla (fasspänning). Nollan finns inte i ett icke direktjordat nät och kablarna är kan alltså vara för långa eller för klena så att en fasspänning inte klarar att driva tillräckligt stor ström vid kortslutning genom kabelns impedans förr att skydden skall lösa ut. Eftersom en nydragning av alla de kilometervis utlagda kablarna skulle bli en så ofantligt kostnad och att tiden för stoppet av processen skulle bli för lång är detta inte ett alternativ. Den här utredningen kommer att visa maximala kabellängden mellan de olika ställverken och motorerna i det befintliga nätet för att man skall kunna direktjorda det. / To increase the protection against electrical fields in the distribution net on Stora Enso’s mill in Skoghall it will be investigated if it’s possible to use direct earth instead of only protective earth as of today. Because the net only has protective earth the company wants to know if the dimensions of the cables are enough to meet the lesser shortcut voltage in a net with direct earth. The smallest shortcut current when using direct earth occurs between one phase and the zero and will be aproximately times less than when using non direct earth where there is not a zero and the shortcut can onlyu occur between two phases. This means that when building a non direct eart net you can use longer or thinner cables with more resistance than you could using direct earth. New cables are not an alternative when the cost would be to great and the downtime of the machines would be too long. This inquiry will show the maximum cabel length from the different protections to the different engines can be if you want to use direct earth and be sure that the fuses will burn when an error occurs.
4

Design och dimensionering av internt kabelnät för havsbaserad vindkraftpark

Torkildsson, Erik January 2007 (has links)
<p>För att kunna upphandla ett elsystem med erforderlig prestanda till en havsbaserad vindkraftpark krävs att köparen ställer krav på säljaren. För att kunna göra detta krävs att ett antal utredningar görs. För detta behöver bl.a. ett internt kabelnät designas. En kabels växelströmsresistans består av en likströmskomponent och en tillsatskomponent. Tillsatskomponenten beror på strömförträngning och"proximity"-effekt. Växelströmsresistansen ger upphov till värmeförluster när kabeln belastas. Ytterligare förluster finns i materialet omkring ledarna, såsom skärm och armering. Dessa totala förluster kan beskrivas med en ekvivalent resistans, plusföljdresistansen. Dielektriska förluster är ytterligare förluster, dessa är spänningsberoende. Hur kablarnas strömvärde kan beräknas för olika förläggningssätt beskrivs. Att ta fram strömvärdet för t.ex. kabel i rör utsatt för solstrålning är komplicerat eftersom många parametrar måste tas hänsyn till. Kablar för vindkraftlast bör kunna väljas med lägre strömvärde än belastningsströmmen eftersom de ej är kontinuerligt belastade. Olika kabelnätslayouter skapas för den planerade havsbaserade vindkraftparken Kriegers flak. Dessa utvärderas med avseende på tekniska och ekonomiska aspekter. Kablar med strömvärden nära eller under belastningsströmmen bör väljas eftersom kabelkostnaden har större inverkan än förlustkostnaden. Dock inverkar det framtida elpriset, om detta stiger ökar förlustkostnadens inverkan.</p>
5

Design och dimensionering av internt kabelnät för havsbaserad vindkraftpark

Torkildsson, Erik January 2007 (has links)
För att kunna upphandla ett elsystem med erforderlig prestanda till en havsbaserad vindkraftpark krävs att köparen ställer krav på säljaren. För att kunna göra detta krävs att ett antal utredningar görs. För detta behöver bl.a. ett internt kabelnät designas. En kabels växelströmsresistans består av en likströmskomponent och en tillsatskomponent. Tillsatskomponenten beror på strömförträngning och"proximity"-effekt. Växelströmsresistansen ger upphov till värmeförluster när kabeln belastas. Ytterligare förluster finns i materialet omkring ledarna, såsom skärm och armering. Dessa totala förluster kan beskrivas med en ekvivalent resistans, plusföljdresistansen. Dielektriska förluster är ytterligare förluster, dessa är spänningsberoende. Hur kablarnas strömvärde kan beräknas för olika förläggningssätt beskrivs. Att ta fram strömvärdet för t.ex. kabel i rör utsatt för solstrålning är komplicerat eftersom många parametrar måste tas hänsyn till. Kablar för vindkraftlast bör kunna väljas med lägre strömvärde än belastningsströmmen eftersom de ej är kontinuerligt belastade. Olika kabelnätslayouter skapas för den planerade havsbaserade vindkraftparken Kriegers flak. Dessa utvärderas med avseende på tekniska och ekonomiska aspekter. Kablar med strömvärden nära eller under belastningsströmmen bör väljas eftersom kabelkostnaden har större inverkan än förlustkostnaden. Dock inverkar det framtida elpriset, om detta stiger ökar förlustkostnadens inverkan.
6

Förstudie gällande konvertering till bränslecellsbaserad elkraftsproduktion på Stena Vision. / A feasibility study regarding fuel cell basedelectrical power production onboard the passenger ferry Stena Vision.

Larsson, Mats, Holm, Oskar January 2015 (has links)
Denna förstudie har utförts ombord på Stena Vision och syftar till att undersöka om en bränslecellskonvertering av fartygets elkraftsproduktion är tekniskt genomförbar. Genom att studera fartygets konstruktion, samt de lagar och förordningar som gäller för installationer på fartyg, har författarna konstruerat ett förslag på ny elnätsstruktur som presenteras i bilaga B2. Författarna lägger även fram ett designförslag på ett bränslesystem, för det nya bränslet vätgas, vilket presenteras i bilaga D. En viktig slutsats är att om en fullständig konvertering, där även nödgeneratorn ersätts, kommer en lagändring vara nödvändig. / This feasibility study has been carried out onboard Stena Vision and it aims to investigate if a fuel cell conversion of the ships electrical power production plant is technically possible. Through studies of the ships construction, as well as laws and regulations regarding ships installations, the authors has constructed a proposal for a new design for the electrical system. The proposal is presented in "bilaga B2". The authors also presents a design proposal for a new fuel system, adapted for the new fuel hydrogen. The new fuel system proposal is presented in "bilaga D". One of the most important conclusions in this thesis is that a full conversion, including the emergency generator, would demand a law amendment.
7

Förslag på 36kV uppsamlingsnät för landbaserad vindkraftpark / Suggestion for 36kV collection grid for land based wind farm

Jonsson, Andreas, Andersson, Andreas January 2015 (has links)
Detta examensarbete behandlar ett uppsamlingsnät för en ny vindkraftpark som planeras i norra Sverige av företaget AB.Parken skall bestå av 101 stycken vindkraftverk som skall förbindas samman med ett kabelnät och anslutas till en transformatorstation. Rapporten behandlar två förslag på hur nätet skall dimensioneras och förläggas. Uppdelningen av vindkraftverken i kluster illustreras av kartor och enlinjescheman.Valda förläggningsätt och dimensioneringar motiveras med kabelberäkningar och grundläggande teori gällande kabeldimensionering. Kabeltyp samt längder för båda förslagens samtliga radialer presenteras i tabeller tillsammans med en enklare kostnads jämförelse.Simuleringar för uppsamlingsnäten utförs i programmet Power World Simulator. För att kontrollera riktigheten i värdena från simuleringen utförs kontrollberäkningar på en radial med pi-modellen.Beräkningarna visar att dimensioneringen är utförd så förluster och spänningsökningar är väl inom gränsvärden för båda förslagen. Uppsamlingsnätets totala reaktiva tillskott är väl inom gränserna för vad vindkraftverken kan kompensera för.Förslag på fortsatt arbete för detta projekt vore att se över konstruktionen av transformatorstationen samt skydd för uppsamlingsnätet. / This report contains a suggestion for a projected wind farm in northern Sweden.The farm contains 101 wind turbines that shall be connected together with a collection grid and connected to a substation.The report contains two different suggestions of dimension and location of the cables for the grid. The turbines are divided into clusters and shown in maps and single line diagramsChosen suggestions and dimensions are reasoned with calculations and basic theory regarding cable sizing. The chosen cable types and lengths for both suggestions are shown in table form, together with a simplified cost comparison.After simulations have been run in power world simulator programme, the values was checked for authenticity with the π-circuit formula.The calculations shows that the selection of cables have accomplished low losses, and the increase of voltage is well within limits for both suggestions.The contribution of reactive power in the collection grid is also within the limits of what the wind turbines can compensate.A suggestion for future work on this project could be the design and dimension of the substation and the safety equipment.

Page generated in 0.1133 seconds