• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of ice blocks in the creation of distinctive proglacial landscapes during and following glacier outburst floods (jokulhlaups)

Fay, Helen January 2001 (has links)
The role of ice blocks in the creation of distinctive proglacial landscapes during and following glacier outburst floods (jökulhlaups) In recent years, it has been recognised that ice blocks form a major component of jökulhlaups. There are, however, very few published hypotheses of ice-block impact during and following jökulhlaups. The November 1996 jökulhlaup in southern Iceland, which transported ice blocks as large as 55 metres in diameter on to Skeioarärsandur, provided an opportunity to study ice-block impact produced during a high-magnitude flood. This thesis aims to (i) determine the impact of ice blocks on the morphology and sedimentology of proglacial river channels during and following a jökuihlaup, and (ii) provide a model which links distinctive landscapes created by ice blocks with specific controls on ice-block impact. A range of ice-block related features are produced during and following a jökulhlaup reflecting glacial and topographical constraints, ice-block characteristics and jökulhlaup hydraulics. In locations where sediment flux remains high throughout a flood, large ice blocks form kettle-scours. Rapid sediment deposition around ice blocks results in the formation and preservation of antidune stoss sides, entirely aggradational ice block obstacle shadows and hummocky topography. The grounding of ice blocks in flows of low sediment concentration or total exhumation of buried ice blocks results in the formation of classic U-shaped obstacle marks. Where channel geometry abruptly expands ice-block berms form. On outwash fans kettle holes and obstacle marks occur in distinct clusters. 11 Kettle holes form post-flood by the in situ melt of (1) progressively buried ice blocks and (2) small ice blocks incorporated into flow deposits. Ice block debris is superimposed onto obstacle marks and kettle holes and deposited on the post-flood streambed to form rimmed kettle holes and obstacle marks and ice-block till mounds respectively. Knowledge of associations between ice blocks and the bedforms and facies produced during and following a jökulhlaup will aid jökulhlaup identification and reconstruction in modern and ancient proglacial environments.
2

Plant and soil microbial responses to drought stress in different ecosystems: the importance of maintaining the continuum

von Rein, Isabell 31 July 2017 (has links)
Der Klimawandel bedroht Ökosysteme auf der ganzen Welt. Besonders der Anstieg in Länge, Intensität und Häufigkeit von Dürren kann bedeutenden Einfluss auf den globalen Kohlenstoffkreislauf haben. Die Frage, ob Pflanzen und Mikroorganismen anfällig gegenüber ökologischem Stress wie Dürren sind, wurde bereits in vielen Studien für verschiedene Ökosysteme und mit verschiedenen Ansätzen untersucht, aber Analysen von Dürreauswirkungen, die ober- und unterirdische Interaktionen von Pflanzen und Mikroorganismen mit einbeziehen, sind eher selten. Deshalb wird in der vorliegenden Studie die Frage erörtert, wie Trockenheit und/oder Hitze die Interaktionen von Pflanzen und Mikroorganismen in Bezug auf ihre Kohlenstoff-Verbindung beeinflussen. Dies dient zur Bestimmung der Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung, wenn das Ökosystem an seine Grenzen gebracht wird. Der Fokus liegt deshalb auf durch Trockenstress und Hitze hervorgerufenen Veränderungen in der ober-unterirdischen Kohlenstoff-Dynamik in zwei vom Klimawandel bedrohten Ökosystemen. Es wurde untersucht, wie extreme Klimaereignisse, deren Häufigkeit in Zukunft weiter ansteigen soll, die Kohlenstoff-Verbindung zwischen Pflanzen und Mikroorganismen beeinflusst und wie mikrobielle Gemeinschaften unter diesen Umständen reagieren, um die Resistenz und Reaktionsmechanismen von Ökosystemen im zukünftigen Klimawandel besser vorhersagen zu können. In Kapitel 4 wurde ein Buchenwaldunterholz-Ökosystem untersucht. Buchenwaldmonolithen wurden einem extremen Klimaereignis (Trockenheit und/oder Hitze) ausgesetzt. Die Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung und Veränderungen in der mikrobiellen Gemeinschaftsstruktur und -aktivität wurden mithilfe von stabilen 13C Isotopenmethoden und Ansätzen auf molekularer Basis, wie 16S rRNA- und Phospholipid-Analysen, bestimmt. In Kapitel 5 wurde ein kleines aquatisches Ökosystems untersucht. Zwei emerse aquatische Makrophyten, Phragmites australis und Typha latifolia, wurden in einem Mesokosmos-Experiment mit Sediment aus einem Soll einer einmonatigen Dürre ausgesetzt. Mithilfe einer 13CO2 Pulsmarkierung, sowie PLFA- und nicht-strukturbildenden Kohlenhydrat-Analysen wurde Kohlenstoff von den Blättern in die Wurzeln bis ins Sediment verfolgt, wo er teilweise in mikrobielle Phospholipide eingebaut wird. Diese Studie hat gezeigt, dass die zwei untersuchten Ökosysteme Trockenstress und Hitze relativ gut widerstehen können, zumindest kurzfristig, und dass das Kohlenstoff-Kontinuum, beziehungsweise die Verbindung zwischen ober- und unterirdischen Gemeinschaften, auch unter starkem Stress intakt bleibt. Zusammenfassend scheint es, dass Ökosysteme stark von einem funktionierenden Pflanze-Boden/Sediment-Mikroorganismen Kohlenstoff-Kontinuum abhängen und versuchen, es auch unter starkem Stress zu erhalten, was möglicherweise dazu beiträgt, dem Anstieg von extremen Dürreperioden aufgrund des Klimawandels besser zu widerstehen. / Climate change is threatening ecosystems around the world. Especially the increase in duration, intensity, and frequency of droughts can have a considerable impact on the global carbon cycle. The question whether plants and microbes are susceptible to environmental stress like drought has been assessed in many studies for different ecosystem types and by using numerous approaches, but research on drought effects that includes above- and belowground interactions is rather scarce. Therefore, the present study assesses the question of how drought and/or heat influence the interactions of plants and microbes, especially the carbon coupling, in order to determine the strength of plant-microbe carbon linkages when an ecosystem is pushed to its limits. The focus of this study thus lies on changes in aboveground-belowground carbon dynamics and the subsequent effects on the soil microbial community under drought and/or heat stress in two climate-threatened ecosystems. It was evaluated how extreme climate events, that are predicted to be more frequent in the near future, affect the carbon coupling between plants and microorganisms and how microbial communities respond under these circumstances, in order to be able to better predict ecosystem resistance and response mechanisms under future climate change. In chapter 4 a beech forest understory ecosystem was investigated. An extreme climate event (drought and/or heat) was imposed on beech forest monoliths and the strength of the plant-microbe carbon linkages and changes in the microbial community structure and activity were determined by using stable 13C isotope techniques and molecular-based approaches like 16S rRNA and microbial phospholipid-derived fatty acid (PLFA) analysis. In chapter 5 a small aquatic ecosystems was investigated. Two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, were grown on kettle hole sediment and then exposed to a month-long summer drought in a mesocosm experiment. By conducting a 13CO2 pulse labeling as well as PLFA and non-structural carbohydrate analyses, the fate of carbon was traced from the plant leaves to the roots and into the sediment, where some of the recently assimilated carbon is incorporated into microbial PLFAs. Overall, this study showed that the two investigated ecosystems can endure environmental stress like heat and drought relatively well, at least in the short-term, and that the carbon continuum, or the linkage between above- and belowground communities, remained intact even under severe stress. In conclusion, it seems that ecosystems strongly depend on and try to maintain a functional plant-soil/sediment microorganism carbon continuum under drought, which might help to withstand the increase in extreme drought events under future climate change.
3

A Laminated Carbonate Record of Late Holocene Precipitation from Martin Lake, LaGrange County, Indiana

Stamps, Lucas G. 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Precipitation trends and their driving mechanisms are examined over a variety of spatial and temporal scales using a multi-proxy, decadally-resolved sediment record from Martin Lake that spans the last 2300 years. This unique archive from a northern Indiana kettle lake documents significant climate variability during the last 2 millennia and shows that the Midwest has experienced a wide range of precipitation regimes in the late Holocene. Three independent proxies (i.e., oxygen and carbon isotopes of authigenic carbonate and %lithics) record variations in synoptic, in-lake and watershed processes related to hydroclimate forcing, respectively. Together, these proxies reveal enhanced summer conditions, with a long period of water column stratification and enhanced summer rainfall from 450 to 1200 CE, a period of time that includes the so-called Medieval Climate Anomaly (950-1300 CE). During the Little Ice Age, from 1260 to 1800 CE, the three proxy records all indicate drought, with decreased summer rainfall and storm events along with decreased lake stratification. The Martin Lake multi-proxy record tracks other Midwest climate records that record water table levels and is out-of-phase with hydroclimate records of warm season precipitation from the High Plains and western United States. This reveals a potential warm season precipitation dipole between the Midwest and western United States that accounts for the spatial pattern of late Holocene drought variability (i.e., when the Midwest is dry, the High Plains and the western United States are wet, and vice versa). The spatiotemporal patterns of late Holocene North American droughts are consistent with hydroclimate anomalies associated with mean state changes in the Pacific North American teleconnection (PNA). Close associations between late Holocene North American hydroclimate and records of Northern Hemisphere temperatures and the Pacific Ocean-atmosphere system suggests a mechanistic linkage between these components of the global climate system that is in line with observational data and climate models. Based on our results, predominantly –PNA conditions and enhanced Midwestern summer precipitation events are likely to result from continued warming of the climate system. In the western United States, current drought conditions could represent the new mean hydroclimate state.

Page generated in 0.0504 seconds