• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 623
  • 215
  • 80
  • 75
  • 67
  • 22
  • 13
  • 12
  • 11
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1434
  • 187
  • 182
  • 179
  • 174
  • 123
  • 120
  • 112
  • 108
  • 103
  • 96
  • 93
  • 87
  • 71
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
921

Locomotor Training: The effects of treadmill speed and body weight support on lower extremity joint kinematics and kinetics

Lathrop, Rebecca Leeann 16 September 2009 (has links)
No description available.
922

The Canine Cervical Spine - Kinematics and Micromorphometry

Johnson, Jacqueline Anne 25 August 2010 (has links)
No description available.
923

The influence of variations in shoe midsole density on the impact force and kinematics of landing in female volleyball players

Nolan, Karen J. 25 May 2004 (has links)
No description available.
924

Locomotor Plasticity of an Amphibious Fish (Polypterus senegalus)

Lutek, Keegan 28 July 2022 (has links)
Animals control locomotion through unpredictable and complex habitats using a single locomotor control system. Because of the disparate physical mechanics of different environments, behavioural plasticity, based on the complex interplay of sensory feedback and environmental constraints, is likely essential for animals moving across environments. However, few studies have investigated neuromuscular control across different environments. To fill this gap, I make use of Polypterus senegalus to address four primary objectives: (1) to explore the extent of neuromuscular plasticity across environmental gradients (viscosity and water depth), (2) to generate and test hypotheses about paramount signals for this neuromuscular plasticity, (3) to determine the neuromuscular underpinnings of locomotor transitions, and (4) to determine the neuromuscular control of developmental behavioural plasticity in novel environments. I measured the kinematic and muscle activity response of P. senegalus to gradual changes in environment forces using gradients of water viscosity and water depth. I then used a semi-intact preparation to investigate the existence and role of the mesencephalic locomotor region, a brain region that controls locomotor speed and mode in other species, for neuromuscular control in P. senegalus. Finally, I used chronic terrestrial acclimation and exercise to determine the neuromuscular underpinnings of behavioural and morphological plasticity previously seen in P. senegalus reared in a terrestrial environment. I found that in high viscosity environments, P. senegalus maintain routine swimming speed using a swimming-like muscle activity pattern with increased effort in the posterior body and the pectoral fin to generate exaggerated swimming kinematics. These results suggest that sensory feedback is essential to accommodating this novel environment. I then demonstrated that axial red muscle always carried an anterior-to-posterior wave of muscle activity in a series of discrete water depths across the aquatic-terrestrial transition. Thus, discrete changes in axial kinematics and pectoral fin coordination across this transtion are likely the result of sensory feedback and mechanical constraints of the environment. I then performed the first experiments searching for the mesencephalic locomotor region in P. senegalus and demonstrated the presence of a putative mesencephalic locomotor region that controls the frequency of swimming-like movements but does not appear to control pectoral fin movements or the transition to walking. Finally, I exposed P. senegalus to chronic terrestrial acclimation and exercise. My results suggested that while both terrestrial acclimation and exercise generate behavioural plasticity, the former results in a larger plastic repsonse. Subtle changes in the duration and timing of pectoral fin muscle activity helped reduce friction between the body and pectoral fin and the substrate below, potentially resulting in the more “effective” walking gait developed by terrestrial acclimated fish. My thesis therefore sheds light on the essential interplay of sensory feedback and mechanical constraint for generating behavioural plasticity on acute and chronic timescales, highlights the potential value of such plasticity for organismal performance and evolution, and develops study systems and experimental frameworks for further investigating the nature of plastic locomotor control in amphibious fish.
925

Primary flight control design for a 4-seat electric aircraft / Primär flygkontrolldesign för ett 4-sits elektriskt flygplan

Lachaume, Cyril January 2021 (has links)
This thesis work is part of a design process which aims to develop a four-seathybrid-electric aircraft at Smartflyer (Grenchen, Switzerland). In that scope,various mechanisms of the plane had to be developed, including the systemactuating the control surfaces. The objective of this thesis work is to designthe primary flight controls which will be implemented in the first prototypebuilt at Smartflyer.Firstly, the work investigates the calculation of the aerodynamic loads appliedto the control surfaces through the use of three different methods which areanalytical calculations, VLM analysis and CFD simulation. Then, the workconsists in defining the kinematic mechanisms of the flight control to handlethe deflection of the horizontal stabiliser, the ailerons and the rudder. Lastly,the calculation of the forces to which are submitted the components of theflight control is conducted. This step allows to determine the pilot controlforces and ensures to take into account the ergonomic aspect during the designphase. The results of this work highlight the limits of the different methodsused and serves as a basis for a future sizing work and detailed conception. / Detta uppsatsarbete är en del av en designprocess som syftar till att utvecklaett fyrsitsigt hybridelektriskt flygplan vid Smartflyer (Grenchen, Schweiz). Idetta omfång måste olika mekanismer i planet utvecklas, inklusive systemetsom manövrerar kontrollytorna. Syftet med detta uppsatsarbete är att utformade primära flygkontrollerna som kommer att implementeras i den första prototypensom byggdes på Smartflyer.För det första undersöker arbetet beräkningen av de aerodynamiska belastningarnasom appliceras på kontrollytorna genom användning av tre olika metodersom är analytiska beräkningar, VLM-analys och CFD-simulering. Därefter bestårarbetet i att definiera de kinematiska mekanismerna för flygkontrollen föratt hantera avböjningen av den horisontella stabilisatorn, kranarna och rodret.Slutligen genomförs beräkningen av de krafter till vilka komponenterna i flygkontrollenöverförs. Detta steg gör det möjligt att bestämma pilotstyrkrafternaoch säkerställer att man tar hänsyn till den ergonomiska aspekten under designfasen.Resultaten av detta arbete belyser gränserna för de olika metodersom används och tjänar som grund för ett framtida storleksarbete och detaljeraduppfattning.
926

Anthropomorphic Robot Arm / Antropomorf Robotarm

WALLÉN KIESSLING, ALEXANDER, MÄÄTTÄ, NICLAS January 2020 (has links)
Robot manipulators are commonly used in today's industrial applications. In this report a 3D-printed anthropomorphic robot arm with three degrees of freedom was constructed. The robot arm operates with the use of a microcontroller and servomotors. Through utilizing the Denavit-Hartenberg method and inverse kinematics the robot’s end effector is able to reach a specified point in space. This report has found that the accuracy of the constructed robotic manipulator reaching a specific coordinate depends on the distance of the end effector from its base. The relative error of the constructed robot’s positioning falls within 1.3- 6.9%, with a 99% confidence. / Robotmanipulatorer är idag vanligt förekommande i industriella applikationer. I denna rapport konstrueras en 3D-printad antropomorf robotarm med tre frihetsgrader. Robotarmen styrs med hjälp av en mikrokontroller och servomotorer. Baserat på DenavitHartenberg metoden och inverskinematik kan robotens ändpunkt ta sig till en specificerad punkt i rummet. Vidare har rapporten funnit att den konstruerade robotens exakthet beror på avståndet emellan robotens manipulator och dess bas. Det relativa felet av robotens positionering ligger inom intervallet 1.3-6.9% med en 99% konfidens.
927

From Oscillating Flat Plate to Maneuvering Bat Flight – Role of Kinematics, Aerodynamics, and Inertia

Rahman, Aevelina 01 February 2022 (has links)
With the aim to understand the synergistic roles played by kinematics, aerodynamics, and inertia in flapping wing maneuvers, this thesis first investigates the plunging motion of a simple flat plate as it is a fundamental motion in the kinematics of many flying animals. A wide range of frequency (k) and amplitude (h) is investigated to account for a robust kinematic characterization in the form of plunge velocity (kh). Leading Edge Vortices (LEVs) are found to be responsible for producing thrust while Trailing Edge Vortices (TEVs) produce drag. The vortex dynamics becomes nonlinear for higher kh and three main vortex-vortex interactions (VVI) are identified in the flow-field. To estimate the sole effect of LEVs on thrust coefficient, TEVs are eliminated by introducing a splitter plate. This resulted in reduced non-linearity in VVI and facilitated a parametrization of aerodynamic thrust coefficient with key kinematic features, frequency (k) and amplitude (h) [C_T= A.k^1.4 h-B where A and B are constants]. This is followed by investigating the more direct problem of bio-inspired MAV research – the interplay of kinematics, aerodynamics, and inertia on maneuvering bat flights. At first, an ascending right turn of a H. pratti bat is investigated to elucidate on the kinematic features and aerodynamic mechanisms used to effectuate the maneuver. Deceleration in flight speed, an increase in flapping frequency, shortening of the upstroke, and thrust generation at the end of the upstroke is observed during this maneuver. The turn is initiated by the synergisytic implementation of roll and yaw rotation where the turning moments are generated by drawing the inside wing closer to the body, by introducing phase lags in force generation between the two wings and by redirecting force production to the outer part of the wing outside of the turn. Upon comparison with a similar maneuver by a H. armiger bat, some commonalities as well as differences were observed. This analysis was followed by a comparative study among different maneuvering flights (a straight flight, two ascending right turns, and a U-turn) in order to establish the complete motion dynamics of a maneuver in action. The individual effects of aerodynamics and wing inertia for maneuvering flights of a H. armiger and H. pratti are investigated. It is found that for both, translation and rotation the overall trajectory trend is mostly driven by the aerodynamic forces and moments, whereas inertial effects drive the intricate intra-cycle fluctuations as well as the vertical velocity and altitude gain during ascent. Additionally, inertial moments play a dominant role for effecting yaw rotations where the importance of the Coriolis and centrifugal moments increase with increasing acuteness of the maneuver, with the largest effect of centrifugal moments being evidenced in the U-turn. / Doctor of Philosophy / The study of flapping wing is of paramount interest in the field of small aerial and aquatic vehicle propulsion. The intricate mechanisms acting behind a flapping wing maneuver can be explained by the synergistic roles played by 3 main components; details of the wing motion or the kinematics, how the air reacts to the wing motion or the aerodynamics, and the effort or force required to move the wings or wing inertia. This dissertation systematically reports the contribution of these components to a flapping flight maneuver. At first, the plunging motion of a simple flat plate is investigated as it is a fundamental motion in the flapping flight of many flying animals. A wide range of frequency and amplitude is investigated and their effect is characterized by a single parameter called "plunge velocity". It is found that, the resultant flow field becomes disorderly for higher plunge velocities which can be characterized by three different types of vortex interactions. The observed results facilitated a robust parametrization of aerodynamic thrust production with key kinematic features, frequency and amplitude. After this, the dissertation focuses on the bio-inspiration aspect of flapping flight by investigating the interplay of kinematics, aerodynamics, and inertia of maneuvering bat flights. At first, an ascending right turn of one species (H. pratti) is investigated to elucidate on the kinematic features and aerodynamic mechanisms used to effectuate the maneuver. Some characteristic features observed are – lowering of flight speed, increase in flapping rate, shortening of upstrokes, and generation of a forward force at the end of the upstroke. It is observed, that the bat turns by using synergistic body rotations in multiple directions which are effected by various techniques such as - drawing the wing inside the turn closer to the body, and changing the timing and location of the forces produced between the two wings. Upon comparison with a similar maneuver by a H. armiger bat, some commonalities as well as differences were observed in the maneuver mechanisms. This analysis was followed by a comparative study among different maneuvering flights (a straight flight, two ascending right turns, and a U-turn) to establish the complete motion dynamics of a maneuver. The individual contributions of aerodynamics and wing inertia for maneuvering flights of a H. armiger and H. pratti are investigated. It is found that for both, translation and rotation the overall trajectory is mostly influenced by the aerodynamic forces and moments, whereas inertial effects are responsible for trajectory fluctuations during a flapping cycle as well contributing to altitude gain during ascent for the H. armiger bat.
928

Evaluation of Graft Pretension Effects in Anterior Cruciate Ligament Reconstruction: A Series of In Vitro and In Vivo Experiments

Ringer, Geoffrey Wadsworth 16 April 1998 (has links)
The purpose of this dissertation was to study the effects of graft pretension in anterior cruciate ligament (ACL) reconstruction through a series of experiments. First, an in vitro study of 5 human knees was conducted to determine if intact joint kinematics could be restored when using the ideal graft - the intrinsic ACL. The ACL tibial insertion site was freed, and pretensions of 0, 10, 20, 30, and 40 N were applied to the ligament using a custom designed load cell connection. Kinematics during a simulated active extension were compared to those of the intact knee. Intact knee kinematics were not restored. Pretensions that best restored tibial anterior/posterior translation and internal/external rotation ranged from 0-40 N. Furthermore, the pretensions that best restored these kinematic variables were widely disparate in two specimens. Second, the in vitro kinematics during a simulated active extension of human and porcine knees were compared and contrasted both prior to and following transection of the ACL. The ACL limited: (1) tibial anterior translation in both species, (2) tibial internal rotation in humans, and (3) tibial external rotation in pigs. Differences in kinematic patterns for tibial internal/external rotation and abduction/adduction between the species was explained by requirements for biped and quadruped stances. Third, the mechanical characteristics of porcine patellar tendon (PT) were investigated by uniaxial tensile testing at two strain rates. Patella-PT-tibia complexes from freshly sacrificed skeletally immature and mature animals were loaded to failure at elongation rates of 20 and 200 mm/min. Both strain rate and skeletal maturity significantly affected failure mode, tangent modulus, and ultimate stress of the tendons, and hence are important considerations in the mechanical evaluation of porcine PT. Fourth, ACL reconstructions were performed using pretensions of 10 or 20 N in an in vivo porcine model with a specially designed load cell/telemetry system to monitor graft load. Graft pretension was seen to increase during fixation with interference screws. Following sacrifice at 4 weeks, tissues were mechanically, histologically, and biochemically analyzed. A pretension of 20 N resulted in a tissue more similar to the intrinsic ACL. / Ph. D.
929

The Hydrodynamics and Energetics of Bioinspired Swimming with Undulatory Electromechanical Fins

Gater, Brittany L. January 2017 (has links)
Biological systems offer novel and efficient solutions to many engineering applications, including marine propulsion. It is of interest to determine how fish interact with the water around them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for analysis due to the maneuverability and versatility of stingrays. The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study was performed to examine the effects of the fin on surrounding water in computational fluid dynamics (CFD) simulations. The results were analyzed both qualitatively, in terms of the pressure contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant forces and the mechanical power requirements to actuate the desired fin motion. The average thrust was shown to depend primarily on the relationship between the swimming speed and the frequency and wavelength (which both are directly proportional to the wavespeed of the fin), although amplitude can be used to augment thrust production as well. However, acceleration was shown to significantly correlate with a large variation in lift and moment, as well as with greater power losses. Using results from the parametric study, the potential for power regeneration was also examined. Relationships between frequency, velocity, drag, and power input were determined using nonlinear regression that explained more than 99.8% of the data. The actuator for a fin was modeled as a single DC motor-shaft system, allowing the combination of the energetic effects of the motor with the fin-fluid system. When combined, even a non-ideal fin model was able to regenerate more power at a given flow speed than was required to swim at the same speed. Even in a more realistic setting, this high proportion of regenerative power suggests that regeneration and energy harvesting could be both feasible and useful in a mission setting. / Master of Science / Animals interact with the world much differently than engineered systems, and can offer new and efficient ways to solve engineering problems, including underwater vehicles. To learn how to move an underwater vehicle in an environmentally conscious way, it is useful to study how a fish’s movements affect the manner in which it moves through the water. Through careful study, the principles involved can be implemented for an efficient, low-disturbance underwater vehicle. The particular fish chosen for in-depth study was the stingray, due to its maneuverability and ability to travel close to the seafloor without disturbing the sediment and creatures around it. In this work, computational analysis was performed on a model of a single stingray fin to determine how the motion of the fin affects the water around it, and how the water affects the fin in turn. The results were analyzed both in terms of the wake behind the fin and in terms of how much power was required to make the fin move in a particular way. The speed of the fin motion was found to have the strongest effect in controlling swimming speed, although the lateral motion of the fin also helped with accelerating faster. Additionally, the potential for a robotic stingray fin to harness power from the water around it was examined. Based on results from simulations of the fin, a mathematical model was formulated to relate energy harvesting with the flow speed past the fin. This model was used to determine how worthwhile it was to use energy harvesting. Analysis of the model showed that harvesting energy from the water was quite efficient, and would likely be a worthwhile investment for an exploration mission.
930

DESIGN AND SYSTEM IDENTIFICATION OF A MOBILE PARALLEL ROBOT

Han Lin (18516603) 08 May 2024 (has links)
<p dir="ltr">The research presents the structure and a prototype an innovative parallel robotic structure using 3 mobile bases for actuation and hybrid motion. A system identification was performed to verify the model of the robot.</p>

Page generated in 0.314 seconds