• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 27
  • 23
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Kirkendall Effect on the Nanoscale

Cserháti, C., Langer, G., Parditka, B., Csik, A., Iguchi, Y., Czigány, Zs., Erdélyi, Z. 13 September 2018 (has links)
Kirkendall effect has been studied experimentally as well as theoretically for decades already. There are theoretical indications, that the Kirkendall effect must operate from the beginning of the diffusion process but there are practically no measurements on this short time and length scale. For that reason, diffusion on the nanometer scale was investigated experimentally in different binary systems in thin film geometry. We followed the diffusion process as well as the Kirkendall effect by different methods (TEM, SNMS and synchrotron X-ray waveguide technique). Investigations were performed in systems with complete solubility (Bi-Sb, Cu-Ni, Bi-Sb) as well as in systems forming intermetallic phase (Fe-Sb, Fe- Pd). It was found that with these methods the Kirkendall shift can be well followed on the nano-scale. In Fe-Sb system even the bifurcation of the Kirkendall plane was observed.
12

Gas Phase Alloying and Sintering Kinetics of 3D Printed Ni-Based Structures

Khodabakhsh, Safa January 2021 (has links)
No description available.
13

Characterization of Titanium Deposition on Nickel Wires using In-situ X-ray Tomography

Bhattacharjee, Arun 06 June 2023 (has links)
No description available.
14

Compositional Influences on Microtube Formation in Ni-Based Wires via the Kirkendall Effect

Zhang, Haozhi 23 August 2022 (has links)
No description available.
15

Simulation of diffusional processes in alloys : techniques and applications

Strandlund, Henrik January 2005 (has links)
This thesis concerns computer simulation of diffusional processes in alloys. The main focus is on the development of simulation techniques for diffusion in single-phase domains, but also diffusion controlled phase-transformations and interfacial processes are discussed. Different one-dimensional simulation techniques for studying the Kirkendall effect are developed and analyzed. Comparisons with experimentally observed marker migration show good agreement for small shifts and comparisons with observed Kirkendall porosity show reasonable agreement under the assumption that a certain supersaturation is needed before the vacancies coalesce into pores. A convenient approach in simulations of kinetics is to use thermodynamic software, e.g. Thermo-Calc, to calculate thermodynamic quantities, e.g. chemical potentials, required in the simulation. The main drawback with such an approach is that it will generate a large amount of additional computational work. To overcome this problem a method that decreases the amount of computational work has been developed. The new method is based on artificial neural networks (ANN). By training the ANN to estimate thermodynamic quantities a significant increase in computational speed was obtained. By calculating the dissipation of available driving force due to diffusion inside migrating interfaces an approach for including the effect of solute drag in computer simulations of grain growth and phase transformations has been developed. The new method is based on an effective interfacial mobility and simulations of grain growth have been performed in binary and ternary systems using experimentally assessed model parameters. / QC 20100930
16

Wire bond failure Mechanism and microstructure analysis

Jang, Herng-Shuoh 01 July 2002 (has links)
The Au-Al bond is a commonly used interconection in IC package.The different composition for Au wire will change the different IMC growth. In this study, we will discuss the pure Au wire, and little Pd or Cu addition in Au wire reacted with Al pad for thermal aging, and we will give the models for these cases.
17

Deposition Kinetics of Titanium and Zirconium Diffusion Coatings on Nickel Microwires via Pack Cementation

Achuthankutty, Ajith 16 June 2020 (has links)
No description available.
18

Estudo do mecanismo de bloqueio da sinterização no sistema UO2-Gd2O3 / Studies on the sintering blockage mechanism in the UO2-Gd2O3 system

Durazzo, Michelangelo 06 March 2001 (has links)
A incorporação do gadolínio diretamente no combustível de reatores nucleares para geração de eletricidade é importante para compensação da reatividade e para o ajuste da distribuição da densidade de potência, permitindo ciclos de queima mais longos, com intervalo de recarga de 18 meses, otimizando-se a utilização do combustível. A incorporação do Gd2O3 sob a forma de pó homogeneizado a seco diretamente com o pó de UO2 é o método comercialmente mais atraente devido à sua simplicidade . Contudo, este método de incorporação conduz a dificuldades na obtenção de corpos sinterizados com a densidade niínima especificada, devido a um bloqueio no processo de sinterização. Pouca informação existe na literatura específica sobre o possível mecanismo deste bloqueio, restrita principalmente à hipótese da formação de uma fase (U,Gd)O2 rica em gadolínio com baixa difusividade. Este trabalho tem como objetivo a investigação do mecanismo de bloqueio da sinterização neste sistema, contribuindo para o esclarecimento da causa deste bloqueio e na elaboração de possíveis soluções tecnológicas. Foi comprovado experimentalmente que o mecanismo responsável pelo bloqueio é baseado na formação de poros estáveis devido ao efeito Kirkendall, originados por ocasião da formação da solução sólida durante a etapa intermediária da sinterização, sendo difícil a sua eliminação posterior, nas etapas finais do processo de sinterização. Com base no conhecimento deste mecanismo, possíveis propostas são apresentadas na direção da solução tecnológica do problema de densificação característico do sistema UO2-Gd203. / The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fliel cycles and optimized fuel utilization. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low difiiisivity Gd rich phase (U,Gd)O2. The objective of this investigation has been to study the blockage mechanism in this system during the sintering process, contributing thus, to clarify the cause for the blockage and to propose feasible technological solutions. Experimentally it has been shown that the blocking mechanism is based on pore formation because of the Kirkendall effect. Formation of a solid solution during the intermediate stage of sintering leads to formation of large pores, which are difficult to remove in the final stage of sintering. Based on this mechanism, technical solutions have been proposed to resolve densification problems in the UO2-Gd2O3 system.
19

Liquid phase sintering of W-Ni-Fe composites : liquid penetration, agglomerate separation and tungsten particle growth

Eliasson, Anders January 2006 (has links)
The initial stage of liquid phase sintering, involving liquid penetration, agglomerate separation, particle spreading and growth has been investigated in experiments using tungsten heavy alloys. The particle composites used were produced by hot isostatic pressing (HIP) of pure powder mixtures of W-Ni-Fe-(Co). By using different HIP temperatures, volume fractions of tungsten, alloying elements like Cobalt and Sulphur or excluding Iron from the matrix, liquid penetration, agglomerate separation and particle growth conditions were affected. The investigations were performed mainly under microgravity (sounding rockets or parabolic trajectories by airplanes) but at high tungsten particle fractions, short sintering times or at infiltration of solid pure tungsten, they were performed at normal gravity. The liquid penetration of the tungsten agglomerates is explained by initial wetting under non-equilibrium conditions, due to the reaction between the liquid matrix and the particles, and a decrease of interfacial energy. The dissolving of tungsten gives a pressure drop in the penetrating liquid and a driving force for the liquid movement by a suggested parabolic penetration model. For cold worked tungsten, a penetration theory was proposed, where an internal stress release in the penetrated tungsten grains creates space for the advancing liquid. The spreading of the tungsten agglomerates is explained by an interagglomerate melt swelling due to a Kirkendall effect. The liquid matrix undergoes a volume increase since the diffusion rates of Ni-Fe are higher than for W and initial concentration gradients of W and Ni, Fe exists. The suggested model by Kirkendall are also used for an analysis of the interaction behaviour between solid particles and a solidification front and inclusion behaviour in iron base alloys during teeming and deoxidation. The average tungsten particles size decrease initially since part of the tungsten particles is dissolved when the non-equilibrium matrix phase is melting. When equilibrium is reached, the tungsten particles grow in accordance with the Ostwald ripening process by an approximately 1/3 power law. Larger particle fraction of particles showed a higher growth rate, due to shorter diffusion distances between the particles. Cobalt, Sulphur and absence of iron in the matrix were found to increase the growth rate of the tungsten particles due to a higher surface tension between the solid tungsten particles and the matrix melt. / QC 20100528
20

Atomic-scale calculations of interfacial structures and their properties in electronic materials

Liang, Tao, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xvi, 136 p.; also includes graphics (some col.). Includes bibliographical references (p. 125-136). Available online via OhioLINK's ETD Center

Page generated in 0.0486 seconds