• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 139
  • 61
  • 7
  • 2
  • Tagged with
  • 407
  • 257
  • 210
  • 133
  • 133
  • 133
  • 89
  • 80
  • 71
  • 38
  • 37
  • 35
  • 33
  • 33
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

Benchirouf, Abderrahmane, Müller, Christian, Kanoun, Olfa 14 May 2016 (has links) (PDF)
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
182

Quantenchemische Berechnungen zur enantioselektiv katalysierten Aldolreaktion

Fischer, Gerd 05 June 2004 (has links) (PDF)
Die Mukaiyama-Aldolreaktion ist die Umsetzung eines Silylenolethers mit einer Carbonylverbindung in Gegenwart einer Lewis-Säure. Diese Reaktion ist eine wichtige Methode zur Knüpfung einer Kohlenstoff-Kohlenstoff-Bindung in der Organischen Chemie. In der vorliegenden Arbeit wird mittels quantenchemischer Methoden ein Einblick in den Mechanismus der Reaktion und die Ursachen der Enantioselektivität gegeben. Ausgehend von der unkatalysierten Reaktion wurde der Mechanismus der von kleineren achiralen Lewis-Säuren wie BF3 und TiCl4 katalysierten bzw. vermittelten Reaktion bearbeitet. Mit dem NEB-Verfahren zur Berechnung des Reaktionsmechanismus der enantioselektiv katalysierten Reaktion kam eine neuartige Möglichkeit zur Optimierung von Reaktionswegen zum Einsatz. Es konnte gezeigt werden, dass die Optimierung auch sehr komplexer Reaktionswege möglich ist. So wurde der gesamte katalytische Cyclus der Ti-BINOL katalysierten Reaktion berechnet, wobei sich der Einsatz der DFTB-Methode (density-functional based tight-binding method) zur Berechnung des Systems als sehr gut geeignet erwies. Die Leistungsfähigkeit der DFTB Methode konnte im Vergleich mit den geometrischen Daten aus Röntgenkristallstrukturanalysen nachgewiesen werden. Die Richtung der stereochemischen Differenzierung konnte in Übereinstimmung mit den experimentellen Ergebnissen bestimmt werden. Aus diesem Ergebnis war es möglich, ein schematisches Modell zu entwickeln, das die Ursache der Selektivität veranschaulicht.
183

Theoretical methods and results for electronic-structure investigations of amorphous carbon

Stephan, Uwe 01 August 1995 (has links)
Uwe Stephan Dissertation This work is concerned with methods and results for the calculation of electronic properties of amorphous carbon models (a-C). These investigations are based upon a very efficient non-selfconsistent ab-initio procedure for the evaluation of electronic states of extended systems using modified self- consistent DFT-LDA states and potentials of neutral atoms. Starting from the LCAO matrices constructed in this method, the electronic densities of states (DOS) of model systems are calculated by diagonalization or with use of the recursion method. Both techniques and, in particular, several versions of the recursion method will be investigated and compared with respect to their numerical efficiency and practical applicability. For DOS calculations in carbon systems a modification of the atomic SCF routine will be proposed and tested in application to the crystalline carbon allotropes diamond and graphite. In this work, the investigation of a-C structures is based on various structural models which have been generated in the author's research group by means of molecular-dynamics simulations using the empirical Tersoff potential as well as the just mentioned DFT-LDA approach. The total energy in this latter procedure is calculated as the sum of the band-structure energy and an empirical repulsive pair potential; contrary to the purely empirical approach, this scheme therefore includes pi-bonding effects and gives rise to a superior description of defect states in these models. As suggested by an analysis of the localization properties of the eigenstates, the defect structure in a-C models depends primarily on the ability of pi- and weak-sigma-bonded undercoordinated atoms to cluster. To investigate these clustering effects, a pi-bonding analysis will be proposed which enables the quantification and classification of the defect states and the estimation of gaps between pi bands. This procedure, which will be justified by local DOS calculations, provides essential structure-property correlations in dependence on the mass densities of the models. Within predominantly fourfold-coordinated models, the occurrence of a certain fraction of threefold-coordinated atoms turns out to stabilize the network by achieving optimum stress and defect minimization due to the preferred formation of pi-bonded atom pairs. Such models exhibit mass densities and pi gaps of about 3.0 g/cm^3 and 2.4 eV, respectively, in close agreement with recent experimental results.
184

Untersuchung und Optimierung einer gepulsten Hochstrom-Bogenquelle zur Herstellung ultradünner Kohlenstoff-Schutzschichten auf Magnetspeicherplatten

Petereit, Bernd 28 April 2004 (has links)
Eine wesentliche Voraussetzung für eine weitere Erhöhung der Speicherdichte von Magnetspeicherplatten ist, dass der Abstand zwischen den Schreib-Lese-Köpfen und der informationstragenden Magnetschicht der Platte von derzeit 20 nm weiter verringert wird. Dies bedeutet, dass die Deckschicht, die die magnetische Schicht der Platte und die Sensoren der Köpfe vor Korrosion und Verschleiß schützt, nicht dicker als 2 – 3 nm sein darf. Die bisher in der Festplattenfertigung magnetrongesputterten Kohlenstoffnitridschichten (CNx) bilden allerdings nur bis hinab zu einer Schichtdicke von etwa 4 nm eine ausreichend geschlossene Schicht und verlieren deshalb unterhalb dieser Grenze ihren Korrosionsschutz. Ein Beschichtungsverfahren, das auch im Sub-4-nm-Bereich noch ausreichend dicht geschlossene Schichten erzeugt ist die kathodische Vakuumbogenverdampfung (Cathodic Arc). Die mit diesem Verfahren abgeschiedenen amorphen Kohlenstoffschichten zeichnen sich zudem durch gute mechanische Eigenschaften aus. Dabei können die gegenüber den herkömmlichen Verfahren höher energetischen Teilchen viel tiefer in die oberste Atomlage eindringen und auf diese Weise eine eng mit der Unterlage verzahnte, dichte und glatte Schicht bilden. In der vorliegenden Arbeit wird eine gepulste Hochstrom-Bogenquelle zur Abscheidung von ultradünnen, harten Kohlenstoff-Schutzschichten auf Magnetspeicherplatten untersucht. Hierzu wurde eine speziell für diesen Einsatz modifizierte Hochstrom-Bogenquelle in eine Plattenfertigungsanlage bei IBM angeschlossen und in iterativen Schritten für einen kontinuierlichen Prozess einer industriellen Massenproduktion optimiert. Die Erzeugung eines homogen glatten Schichtdickenprofils über eine Substratoberfläche mit einem Durchmesser von 95mm konnte durch die Entwicklung eines magnetischen Multipolarrays erreicht werden. Die Partikelproblematik des Arc-Verfahrens konnte durch die Konstruktion und Optimierung eines magnetischen 120°-Plasmafilters, der die Partikel wirkungsvoll vom Plasmastrahl separiert, gelöst werden. Neben der technischen Weiterentwicklung der Hochstrom-Bogenquelle wurden die in der Produktionsumgebung erzeugten Kohlenstoffschichten hinsichtlich ihrer mechanischen und anwendungsspezifischen Eigenschaften untersucht und durch gezielte Wahl der Prozessparameter optimiert.
185

Investigations to the stability of CNT-dispersions using impedance spectroscopy

Tröltzsch, Uwe, Benchirouf, Abderrahmane Amor, Kanoun, Olfa, Dinh, Nghia Trong January 2010 (has links)
Carbon nano tubes (CNT’s) are promising candidates for several sensor applications such as optical sensors, strain gauges or flow sensors. For certain sensor structures liquid CNT dispersions are required. These are important not only for the realization of CNT-films for sensors like strain gauges but also for technological processes such as dielectrophoresis. CNT-films are realized by deposing the dispersion on a carrier material followed by a drying process. The dispersion properties depend on several parameters like CNT concentration, surfactant concentration, sonication time, centrifugation time, storing time and other parameters. Methods for characterization of dispersions are up to now limited to UV/VIS spectroscopy. This is generally limited to low CNT concentrations. This paper discusses the possibility to use impedance spectroscopy as characterization method for the stability of the dispersions. The impedance of the dispersion was measured using a conductivity measurement cell with platinum electrodes. The behavior of characteristic points of the impedance spectrum was investigated for three identically prepared samples during 7 days of storing time. The systematic trend observed is definitively larger than the variance between different samples. With increasing time after preparation the CNT fallout will increase and the amount of deposable CNT’s will decrease. The decreasing imaginary part indicates an easier diffusion of surfactant molecules because they are not longer attached to CNT’s.
186

Machine Learning Potentials - State of the research and potential applications for carbon nanostructures

Rothe, Tom 13 November 2019 (has links)
Machine Learning interatomic potentials (ML-IAP) are currently the most promising Non-empirical IAPs for molecular dynamic (MD) simulations. They use Machine Learning (ML) methods to fit the potential energy surface (PES) with large reference datasets of the atomic configurations and their corresponding properties. Promising near quantum mechanical accuracy while being orders of magnitudes faster than first principle methods, ML-IAPs are the new “hot topic” in material science research. Unfortunately, most of the available publications require advanced knowledge about ML methods and IAPs, making them hard to understand for beginners and outsiders. This work serves as a plain introduction, providing all the required knowledge about IAPs, ML, and ML-IAPs from the beginning and giving an overview of the most relevant approaches and concepts for building those potentials. Exemplary a gaussian approximation potential (GAP) for amorphous carbon is used to simulate the defect induced deformation of carbon nanotubes. Comparing the results with published density-functional tight-binding (DFTB) results and own Empirical IAP MD-simulations shows that publicly available ML-IAP can already be used for simulation, being indeed faster than and nearly as accurate as first-principle methods. For the future two main challenges appear: First, the availability of ML-IAPs needs to be improved so that they can be easily used in the established MD codes just as the Empirical IAPs. Second, an accurate characterization of the bonds represented in the reference dataset is needed to assure that a potential is suitable for a special application, otherwise making it a 'black-box' method.:1 Introduction 2 Molecular Dynamics 2.1 Introduction to Molecular Dynamics 2.2 Interatomic Potentials 2.2.1 Development of PES 3 Machine Learning Methods 3.1 Types of Machine Learning 3.2 Building Machine Learning Models 3.2.1 Preprocessing 3.2.2 Learning 3.2.3 Evaluation 3.2.4 Prediction 4 Machine Learning for Molecular Dynamics Simulation 4.1 Definition 4.2 Machine Learning Potentials 4.2.1 Neural Network Potentials 4.2.2 Gaussian Approximation Potential 4.2.3 Spectral Neighbor Analysis Potential 4.2.4 Moment Tensor Potentials 4.3 Comparison of Machine Learning Potentials 4.4 Machine Learning Concepts 4.4.1 On the fly 4.4.2 De novo Exploration 4.4.3 PES-Learn 5 Simulation of defect induced deformation of CNTs 5.1 Methodology 5.2 Results and Discussion 6 Conclusion and Outlook 6.1 Conclusion 6.2 Outlook
187

Mechanisches Verhalten von kohlenstoffgebundenen Feuerfestwerkstoffen bis 1500°C

Solarek, Johannes 22 January 2020 (has links)
Die Arbeit führt Methoden zur Durchführung von Zugversuchen und bruchmechanischen Versu-chen ein und liefert mechanische Kennwerte für zwei kohlenstoffgebundene FFW im Bereich von RT bis 1500°C. Dafür standen ein grobkörniges MgO-C und ein feinkörniges Al2O3-C zur Ver-fügung. Die Werkstoffe zeigten bis 1200°C keine Duktilität und sprachen spröde. Die Schädigung erfolgte ausschließlich durch Risswachstum. Dieses fand beim MgO-C temperaturunabhängig auf Grund der rissbehafteten Mikrostruktur durch stabiles Risswachstum bereits vorhandener Risse statt. Es kam dabei zur Bildung von Rissnetzwerken sowie zu zahlreichen energiedissipierenden Prozessen. Beim Al2O3-C trat be RT instabiles Risswachstum auf. Bei hohen Temperaturen kam es durch thermisch aktivierte Prozesse zu duktilem Verhalten und stabilem Risswachstum. Beim grobkörnigen MgO-C wurden große Verformungen durch das starre Oxidgerüst verhindert. Zu-sätzlich zeigten die Werkstoffe auf Grund ihrer Mikrostruktur eine Zunahme der Festigkeit mit steigender Temperatur. Aus den Versuchen wurde ein Heißpressverfahren zur Herstellung von gradierten Werkstoffen abgeleitet.:1 Einleitung 2 Grundlagen 2.1 Feuerfestwerkstoffe 2.1.1 Einsatz und Beanspruchung von FFW 2.1.2 Einteilung von FFW 2.2 Kohlenstoffgebundene FFW 2.2.1 Kohlenstoff und seine Terminologie 2.2.2 Grundlegende Eigenschaften kohlenstoffgebundener FFW 2.2.3 Anwendungen kohlenstoffgebundener FFW 2.2.4 Aufbau und Mikrostruktur kohlenstoffgebundener FFW 2.2.5 Herstellungsparameter kohlenstoffgebundener FFW 2.2.6 Chemische Eigenschaften kohlenstoffgebundener FFW 2.3 Mechanische Eigenschaften kohlenstoffgebundener FFW 2.3.1 Mechanische Eigenschaften kohlenstoffgebundener FFW bei RT 2.3.2 Mechanische Eigenschaften kohlenstoffgebundener FFW bei HT 2.4 Grundlagen zur Werkstoffprüfung bei RT und hohen Temperaturen 2.4.1 Streuung und Einfluss der Probengröße 2.4.2 Belastungsrate 2.4.3 Zugversuche 2.4.4 Druckversuche 2.4.5 Biegeversuche 2.4.6 Bruchmechanische Untersuchungen 2.4.7 Temperaturwechselbeständigkeit 2.4.8 Kriechen 2.4.9 Spannungsrelaxation 2.4.10 Härtemessung 2.4.11 Hochtemperaturprüfung in Kaltkammerofen mit induktiver Heizung 2.4.12 Temperaturmessung mit Thermoelement, Pyrometrie, Thermographie 2.4.13 Bestimmung elastischer Konstanten mittels akustischer Methoden 2.4.14 Optische in situ Schadensbeschreibung mittels Mikroskopie und DIC 2.5 Heißpressverfahren 3 Experimentelles 3.1 Werkstoffe 3.1.1 Kohlenstoffgebundenes Magnesiumoxid (MgO-C) 3.1.2 Kohlenstoffgebundenes Aluminiumoxid (Al2O3-C) 3.1.3 Graphit (ISEM 8) 3.2 Mechanische Tests 3.2.1 Prüfmaschine für Druck- und Biegeversuche 3.2.2 Prüfmaschine für Zug-Druck-Versuche 3.2.3 Probengeometrien 3.2.4 Druckversuche 3.2.5 Biegeversuche 3.2.6 Bruchmechanische Versuche 3.2.7 Versuche mit Zugbeanspruchung 3.2.8 Versuchsabläufe der Hochtemperaturversuche 3.2.9 Temperaturmessung mittels Thermographie 3.3 Weitere Versuchsmethoden 3.3.1 Mikrostrukturuntersuchung mittels Mikroskopie und Röntgenbeugung 3.3.2 Porositäts- und Dichtemessung 3.3.3 Härtemessung 3.3.4 Dynamischer E-Modul 4 Methodische Erkenntnisse und Voruntersuchungen 4.1 Temperaturmessung und -verteilung 4.1.1 Temperaturmessung mittels Thermoelement und Pyrometer 4.1.2 Emissionskoeffizient und Probenbeschichtung 4.1.3 Temperaturverteilung 4.2 Dehnungsmessung 4.3 Zugversuche an Keramiken 4.3.1 Übertragung von Zugkräften 4.3.2 Axialität in Zugversuchen 4.4 Bruchmechanische Versuche 4.4.1 Kerbeinbringung 4.4.2 Überprüfung des optischen Messsystems 4.4.3 Bestimmung der Risslänge während des Versuchs 4.5 Überprüfung der Messmethodik mit dem Referenzwerkstoff Graphit ISEM-8 5 Ergebnisse 5.1 Mikrostrukturbeschreibung der untersuchten FFW 5.1.1 Mikrostruktur des MgO-C’s 5.1.2 Mikrostruktur des Al2O3-C’s 5.2 Mechanisches Verhalten bei RT 5.2.1 Mechanisches Verhalten von MgO-C bei RT 5.2.2 Mechanisches Verhalten von Al2O3-C bei RT 5.3 Mechanische Eigenschaften bei HT 5.3.1 Mechanisches Verhalten von MgO-C bei HT 5.3.2 Mechanisches Verhalten von Al2O3-C bei HT 5.4 Heißpressverfahren für kohlenstoffgebundene FFW 5.4.1 Beschreibung des Heißpressverfahrens 5.4.2 Physikalische Eigenschaften und Mikrostruktur des Presslings 5.4.3 Mechanische Eigenschaften des Presslings 6 Diskussion 7 Zusammenfassung und Ausblick Literatur Anhang
188

Sensitive Electrochemical Detection Platforms for Anthracene and Pyrene

Mwazighe, Fredrick 08 October 2020 (has links)
Der elektrochemische Nachweis von polycyclischen aromatischen Kohlenwasserstoffen (PAK), zu denen Anthracen und Pyren gehören, bietet eine kostengünstigere, einfachere und schnellere alternative Analysemethode als herkömmliche Methoden wie GC und HPLC. Im Vergleich zu diesen Methoden weist er jedoch nach wie vor eine geringere Empfindlichkeit auf. Einige neuere Bemühungen haben an einem Mangel an Selektivität gelitten, entweder aufgrund der elektrodenmodifizierende Schicht mit hohem Hintergrundstrom oder der Wahl eines Leitelektrolyten, der die Detektion stört. Bei dem vorliegenden Versuch wurden Pt-Pd-Nanopartikel (NPs) und MWCNTs verwendet, um eine Glaskohlenstoffelektrode (GCE) zum empfindlichen Nachweis von Anthracen und Pyren zu modifizieren. Die verwendeten NPs wurden unter Verwendung eines wässrigen Extrakts aus Blättern von E. grandis synthetisiert, einem nachhaltigen und umweltfreundlichen Syntheseweg. Durch einer Optimierung der Mengen an Pt- und Pd-Ionen im Vorläufer wurden NPs mit einer durchschnittlichen Größe von 10 nm erhalten, wobei ein Verhältnis von 1 Pt-Ion zu 3 Pd-Ionen die kleinste Größe ergab. Durch XPS wurde festgestellt, dass die Zusammensetzung der NPs von Pt2+ und Pd0 dominiert wird. Die XRD-Analyse ergab eine kristalline Natur mit einer flächenzentriert-kubischen Struktur. Die Pt-Pd-NPs bewirkten eine Erhöhung des Spitzenstroms um 94 % für Pyren, führten jedoch zu niedrigeren Spitzenströmen für Anthracen. Wenn die NPs weiter mit MWCNTs zum Nachweis von Pyren verwendet wurden, wurde eine Spitzenstromsteigerung von etwa 200 % mit einem Dynamikbereich von 66–130 μM und einer LOD von 23 μM beobachtet. Es wurde auch festgestellt, dass der elektrochemische Prozess gemischt diffusions- und adsorptionskontrolliert ist. Aufgrund des Einflusses der Adsorption musste die Akkumulationszeit im Analyseverfahren berücksichtigt werden. MWCNTs wurden beim Nachweis von Anthracen angewendet, wobei eine Erhöhung des Spitzenstroms um 74 % und eine Verringerung des Überpotentials um 53 mV beobachtet wurde. Ein dynamischer Bereich von 50–146 µM und eine LOD von 42 µM wurden bestimmt. Niedrigere Konzentrationen wurden mit einer Leitungswasserprobe gemessen, die mit Anthracen versetzt war, hauptsächlich wegen der geringen Löslichkeit von PAK in Wasser. Der Einfluss der Säurebehandlung von MWCNTs auf den Nachweis von Anthracen und Pyren wurde ebenfalls untersucht. Die Säurebehandlung ermöglichte das Laden von mehr Material ohne Ablösen der modifizierten Schicht, was zu höheren Spitzenstromverbesserungen für Anthracen (533 %) und Pyren (448 %) führte. Für Anthracen und Pyren wurden LODs von 40 µM bzw. 14 µM bestimmt, die nur geringfügig niedriger sind als die bei MWCNTs/GCE und Pt-PdNPs/MWCNTs/GCE beobachteten Werte. Der Nachweis von Anthracen wurde durch die Anwesenheit von Pyren und gewöhnlichen Ionen gestört, während die LOD für Pyren in Gegenwart von Anthracen 18 µM betrug. Es wurde festgestellt, dass die auf MWCNTs basierende elektrochemische Nachweisplattform eine bessere Reaktion auf Pyren aufweist.:Bibliographische Beschreibung i Referat i Abstract iii Zeitraum, Ort der Durchführung v Acknowledgements vi Dedication vii Table of Contents viii List of Abbreviations and Symbols xii Chapter 1 1 Introduction 1 1.1 Overview 1 1.2 Polycyclic Aromatic Hydrocarbons 2 1.3 Electrochemical Sensors 7 1.3.1 General Response Curve for Chemical Sensors 10 1.4 Carbon Nanotubes 13 1.5 Use of Nanoparticles in Electrochemical Detection 18 1.6 Green Synthesis of Nanoparticles and The Rationale Behind It 21 1.7 Previous Efforts in the Electrochemical Detection of Polycyclic Aromatic Hydrocarbons 24 1.8 Objectives of the Study 26 Chapter 2 28 Experimental 28 2.1 Chemicals 28 2.1.1 Preparation of Anthracene and Pyrene Solutions 28 2.2 Collection and Preparation of Plant Material 29 2.3 Synthesis and Preparation of Materials 29 2.3.1 Synthesis of Metallic Nanoparticles 29 2.3.2 Acid Treatment of Multi-walled Carbon Nanotubes 30 2.4 Characterization of the Nanomaterials 30 2.4.1 UV-Vis Spectrophotometry 30 2.4.2 SEM/EDX and TEM Analysis 30 2.4.3 Powder X-ray Diffractometry 31 2.4.4 XPS Analysis 31 2.5 Electrochemical Measurements 31 2.5.1 Preparation of the Bare and Modified Glassy Carbon Electrode 32 2.5.2 Characterization of the Bare and the Modified Glassy Carbon Electrode 33 2.5.3 Electrocatalytic Oxidation of Anthracene on the Bare and Modified GCEs 33 2.5.4 Electrocatalytic Oxidation of Pyrene on the Bare and Modified GCEs 34 Chapter 3 35 Synthesis, Characterization, and Application of Pt-Pd Nanoparticles in the Electrochemical Detection of Anthracene and Pyrene 35 3.1 Test for Flavonoids and Polyphenols in the E. grandis Leaves’ Extract 35 3.2 Synthesis of Nanoparticles 35 3.3 Characterization of Nanoparticles 37 3.3.1 TEM Analysis 37 3.3.2 SEM Analysis 40 3.3.3 EDX Analysis 41 3.3.4 Powder X-Ray Diffraction Analysis 45 3.3.5 XPS Analysis of Pt-Pd Particles 46 3.4 Impedance Measurements of the Bare and Nanoparticle-modified Glassy Carbon Electrode 49 3.5 Electrochemical Oxidation of Anthracene and Pyrene at the Bare and Nanoparticles-modified Glassy Carbon Electrode 51 3.6 Conclusions 53 Chapter 4 55 Pt-PdNPs/MWCNTs-Modified GCE for the Detection of Pyrene 55 4.1 Impedance Measurement with Pt-PdNPs/MWCNTs/GCE 55 4.2 Electrochemical Oxidation of Pyrene on Pt-PdNPs/MWCNTs/GCE 56 4.3 Analysis of Varying Concentrations of Pyrene on Pt-PdNPs/MWCNTs/GCE 59 4.4 Selectivity 61 4.5 Conclusions 62 Chapter 5 64 Exploring Multi-walled Carbon Nanotubes for the Detection of Anthracene 64 5.1 Impedance Measurement of MWCNT-Modified Glassy Carbon Electrode 64 5.2 Electrochemical Oxidation of Anthracene on MWCNT/GCE 65 5.3 Analysis of Varying Concentrations of Anthracene Using MWCNTs/GCE 68 5.4 Detection of Anthracene in Tap Water 71 5.5 Conclusions 72 Chapter 6 73 Effect of Acid Treatment of Multi-walled Carbon Nanotubes on the Detection of Anthracene and Pyrene 73 6.1 Characterization of fMWCNTs 74 6.2 Electrochemical Oxidation of Anthracene on fMWCNTs/GCE 75 6.2.1 Effect of Change in Scan Rate 76 6.2.2 Effect of Accumulation Time 77 6.2.3 Application of fMWCNTs/GCE in the Analysis of Varying Concentrations of Anthracene 77 6.3 Electrochemical Oxidation of Pyrene on fMWCNTs/GCE 79 6.4 Selectivity 82 6.4.1 Co-detection of Anthracene and Pyrene at fMWCNTs/GCE 83 6.4.2 Interference of Some Common Ions 85 6.5 Detection of Pyrene in Tapwater using fMWCNTs/GCE 86 6.6 Conclusions 87 Chapter 7 88 Summary and Outlook 88 7.1 Summary 88 7.2 Outlook 90 References 92 Selbständigkeitserklärung 101 Curriculum Vitae 102 / Electrochemical detection of polycyclic aromatic hydrocarbons (PAHs), which include anthracene and pyrene, offers a cheaper, simpler, and faster alternative method of analysis than conventional methods like GC and HPLC. However, it still is not as sensitive as these methods. Some recent efforts have suffered from lack of selectivity, either from the electrode modifying layer having high background current or from the choice of supporting electrolyte interfering with the detection. In this work, Pt-Pd nanoparticles (NPs) and MWCNTs were used to modify a glassy carbon electrode (GCE) for sensitive detection of anthracene and pyrene. The NPs used were synthesized using an aqueous extract from E. grandis leaves, a sustainable and environmentally friendly synthetic route. NPs with an average size of 10 nm were obtained by optimizing the amounts of Pt- and Pd-ions in the precursor, with a ratio of 1:3 Pt to Pd-ions producing the smallest size. Through XPS, the composition of the NPs was established to be dominated by Pt2+ and Pd0. XRD analysis revealed a crystalline nature with a face-centered cubic structure. The Pt-Pd NPs produced 94 % enhancement in the peak current for pyrene but resulted in lower peak currents for anthracene. When the NPs were further used with MWCNTs for the detection of pyrene, about 200% peak current enhancement was observed with a dynamic range of 66–130 µM and LOD of 23 µM. The electrochemical process was also established to be mixed diffusion- and adsorption-controlled. The influence of adsorption necessitated the employment of accumulation time in the analysis procedure. MWCNTs were applied in the detection of anthracene and a 74 % peak current enhancement and a reduction in the overpotential by 53 mV were observed. A dynamic range of 50–146 µM and LOD of 42 µM were determined. Lower concentrations were recovered from a tap water sample that was spiked with anthracene, mainly because of the low solubility of PAHs in water. Effect of acid treatment of MWCNTs on the detection of anthracene and pyrene was also investigated. Acid treatment allowed for loading of more material without peeling off of the modified layer which resulted in higher peak current enhancements for anthracene (533%) and pyrene (448%). LODs of 40 µM and 14 µM were determined for anthracene and pyrene respectively, which are only slightly lower than what was observed at MWCNTs/GCE and Pt-PdNPs/MWCNTs/GCE. Detection of anthracene was interfered by the presence of pyrene and common ions, while the LOD for pyrene in the presence of anthracene was 18 µM. The MWCNTs based electrochemical detection platform was found to have a better response towards pyrene.:Bibliographische Beschreibung i Referat i Abstract iii Zeitraum, Ort der Durchführung v Acknowledgements vi Dedication vii Table of Contents viii List of Abbreviations and Symbols xii Chapter 1 1 Introduction 1 1.1 Overview 1 1.2 Polycyclic Aromatic Hydrocarbons 2 1.3 Electrochemical Sensors 7 1.3.1 General Response Curve for Chemical Sensors 10 1.4 Carbon Nanotubes 13 1.5 Use of Nanoparticles in Electrochemical Detection 18 1.6 Green Synthesis of Nanoparticles and The Rationale Behind It 21 1.7 Previous Efforts in the Electrochemical Detection of Polycyclic Aromatic Hydrocarbons 24 1.8 Objectives of the Study 26 Chapter 2 28 Experimental 28 2.1 Chemicals 28 2.1.1 Preparation of Anthracene and Pyrene Solutions 28 2.2 Collection and Preparation of Plant Material 29 2.3 Synthesis and Preparation of Materials 29 2.3.1 Synthesis of Metallic Nanoparticles 29 2.3.2 Acid Treatment of Multi-walled Carbon Nanotubes 30 2.4 Characterization of the Nanomaterials 30 2.4.1 UV-Vis Spectrophotometry 30 2.4.2 SEM/EDX and TEM Analysis 30 2.4.3 Powder X-ray Diffractometry 31 2.4.4 XPS Analysis 31 2.5 Electrochemical Measurements 31 2.5.1 Preparation of the Bare and Modified Glassy Carbon Electrode 32 2.5.2 Characterization of the Bare and the Modified Glassy Carbon Electrode 33 2.5.3 Electrocatalytic Oxidation of Anthracene on the Bare and Modified GCEs 33 2.5.4 Electrocatalytic Oxidation of Pyrene on the Bare and Modified GCEs 34 Chapter 3 35 Synthesis, Characterization, and Application of Pt-Pd Nanoparticles in the Electrochemical Detection of Anthracene and Pyrene 35 3.1 Test for Flavonoids and Polyphenols in the E. grandis Leaves’ Extract 35 3.2 Synthesis of Nanoparticles 35 3.3 Characterization of Nanoparticles 37 3.3.1 TEM Analysis 37 3.3.2 SEM Analysis 40 3.3.3 EDX Analysis 41 3.3.4 Powder X-Ray Diffraction Analysis 45 3.3.5 XPS Analysis of Pt-Pd Particles 46 3.4 Impedance Measurements of the Bare and Nanoparticle-modified Glassy Carbon Electrode 49 3.5 Electrochemical Oxidation of Anthracene and Pyrene at the Bare and Nanoparticles-modified Glassy Carbon Electrode 51 3.6 Conclusions 53 Chapter 4 55 Pt-PdNPs/MWCNTs-Modified GCE for the Detection of Pyrene 55 4.1 Impedance Measurement with Pt-PdNPs/MWCNTs/GCE 55 4.2 Electrochemical Oxidation of Pyrene on Pt-PdNPs/MWCNTs/GCE 56 4.3 Analysis of Varying Concentrations of Pyrene on Pt-PdNPs/MWCNTs/GCE 59 4.4 Selectivity 61 4.5 Conclusions 62 Chapter 5 64 Exploring Multi-walled Carbon Nanotubes for the Detection of Anthracene 64 5.1 Impedance Measurement of MWCNT-Modified Glassy Carbon Electrode 64 5.2 Electrochemical Oxidation of Anthracene on MWCNT/GCE 65 5.3 Analysis of Varying Concentrations of Anthracene Using MWCNTs/GCE 68 5.4 Detection of Anthracene in Tap Water 71 5.5 Conclusions 72 Chapter 6 73 Effect of Acid Treatment of Multi-walled Carbon Nanotubes on the Detection of Anthracene and Pyrene 73 6.1 Characterization of fMWCNTs 74 6.2 Electrochemical Oxidation of Anthracene on fMWCNTs/GCE 75 6.2.1 Effect of Change in Scan Rate 76 6.2.2 Effect of Accumulation Time 77 6.2.3 Application of fMWCNTs/GCE in the Analysis of Varying Concentrations of Anthracene 77 6.3 Electrochemical Oxidation of Pyrene on fMWCNTs/GCE 79 6.4 Selectivity 82 6.4.1 Co-detection of Anthracene and Pyrene at fMWCNTs/GCE 83 6.4.2 Interference of Some Common Ions 85 6.5 Detection of Pyrene in Tapwater using fMWCNTs/GCE 86 6.6 Conclusions 87 Chapter 7 88 Summary and Outlook 88 7.1 Summary 88 7.2 Outlook 90 References 92 Selbständigkeitserklärung 101 Curriculum Vitae 102
189

Quantenchemische Berechnungen zur enantioselektiv katalysierten Aldolreaktion

Fischer, Gerd 30 June 2004 (has links)
Die Mukaiyama-Aldolreaktion ist die Umsetzung eines Silylenolethers mit einer Carbonylverbindung in Gegenwart einer Lewis-Säure. Diese Reaktion ist eine wichtige Methode zur Knüpfung einer Kohlenstoff-Kohlenstoff-Bindung in der Organischen Chemie. In der vorliegenden Arbeit wird mittels quantenchemischer Methoden ein Einblick in den Mechanismus der Reaktion und die Ursachen der Enantioselektivität gegeben. Ausgehend von der unkatalysierten Reaktion wurde der Mechanismus der von kleineren achiralen Lewis-Säuren wie BF3 und TiCl4 katalysierten bzw. vermittelten Reaktion bearbeitet. Mit dem NEB-Verfahren zur Berechnung des Reaktionsmechanismus der enantioselektiv katalysierten Reaktion kam eine neuartige Möglichkeit zur Optimierung von Reaktionswegen zum Einsatz. Es konnte gezeigt werden, dass die Optimierung auch sehr komplexer Reaktionswege möglich ist. So wurde der gesamte katalytische Cyclus der Ti-BINOL katalysierten Reaktion berechnet, wobei sich der Einsatz der DFTB-Methode (density-functional based tight-binding method) zur Berechnung des Systems als sehr gut geeignet erwies. Die Leistungsfähigkeit der DFTB Methode konnte im Vergleich mit den geometrischen Daten aus Röntgenkristallstrukturanalysen nachgewiesen werden. Die Richtung der stereochemischen Differenzierung konnte in Übereinstimmung mit den experimentellen Ergebnissen bestimmt werden. Aus diesem Ergebnis war es möglich, ein schematisches Modell zu entwickeln, das die Ursache der Selektivität veranschaulicht.
190

Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries

Bloi, Luise Maria, Hippauf, Felix, Boenke, Tom, Rauche, Marcus, Paasch, Silvia, Schutjajew, Konstantin, Pampel, Jonas, Schwotzer, Friedrich, Dörfler, Susanne, Althues, Holger, Oschatz, Martin, Brunner, Eike, Kaskel, Stefan 02 March 2023 (has links)
Porous carbons are promising anode materials for next generation lithium batteries due to their large lithium storage capacities. However, their highsloping capacity during lithiation and delithiation as well as capacity fading due to intense formation of solid electrolyte interphase (SEI) limit their gravimetric and volumetric energy densities. Herein we compare a microporous carbide derived carbon material (MPC) as promising future anode for all solid state batteries with a commercial high performance hard carbon anode. The MPC obtains high and reversible lithiation capacities of 1000 mAh g 1 carbon in half cells exhibiting an extended plateau region near 0 V vs. Li/Liþ preferable for full cell application. The well defined microporosity of the MPC with a specific surface area of >1500 m2 g 1 combines well with the argyrodite type electrolyte (Li6PS5Cl) suppressing extensive SEI formation to deliver high coulombic efficiencies. Preliminary full cell measurements vs. nickel rich NMC cathodes (LiNi0.9Co0.05Mn0.05O2) provide a considerably improved average potential of 3.76 V leading to a projected energy density as high as 449 Wh kg 1 and reversible cycling for more than 60 cycles. 7Li Nuclear Magnetic Resonance spectroscopy was combined with ex situ Small Angle X ray Scattering to elucidate the storage mechanism of lithium inside the carbon matrix. The formation of extended quasi metallic lithium clusters after electrochemical lithiation was revealed.

Page generated in 0.0888 seconds