• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 20
  • 16
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of Nanowires Using Molecular Dynamics Simulations

Monk, Joshua D. 07 December 2007 (has links)
In this dissertation I present computational studies that focus on the unique characteristics of metallic nanowires. We generated virtual nanowires of nanocrystalline nickel (nc-Ni) and single crystalline silver (Ag) in order to investigate particular nanoscale effects. Three-dimensional atomistic molecular dynamics studies were performed for each sample using the super computer System X located at Virginia Tech. Thermal grain growth simulations were performed on 4 nm grain size nc-Ni by observing grain sizes over time for temperatures from 800K to 1450K and we discovered grain growth to be linearly time-dependant, contrary to coarse grained materials with square root dependence. Strain induced grain growth studies consisted of straining the nanostructures in tension at a strain rate of 3.3 x 10^8 s⁻¹. Grain boundary movement was recorded to quantify grain boundary velocities and grain growth. It was shown that during deformation, there is interplay between dislocation-mediated plasticity and grain boundary accommodation of plasticity through grain boundary sliding. To further understand the effect of stress on nanocrystalline materials we performed tensile tests at different strain rates, varying from 2.22 x 10⁷ s⁻¹ to 1.33 x 10⁹ s⁻¹ for a 5 nm grain size nc-Ni nanowire with a 5 nm radius. The activation volume was given as ~2b³, where b is the Burger's vector and is consistent with a grain boundary dominate deformation mechanism. We expanded our research to 10 nm grain size nc-Ni nanowires with radii from 5 nm to 18 nm. Each wire was deformed 15% in tension or compression at a strain rate of 3.3 x 10⁸ s⁻¹. Asymmetry was observed for all radii, in which larger radii produced higher flow stresses for compression and small radii yielded higher flow stresses in tension. A cross over in the tension-compression asymmetry is found to occur at a radius of ~9 nm. A change in the dominate deformation mechanism in combination with the ease of grain boundary sliding contributes to the phenomena of the asymmetry. In the final chapter we focus on the energetic stability of multi-twinned Ag nanorods at the nanoscale. We used a combination of molecular statics and dynamics to find the local minimum energies for the multi-twinned nanorods and the non-twinned "bulk" materials and concluded that the stability of multi-twinned nanorods is highly influenced by the size of the sample and the existence of the ends. Using an analytical model we found the excess energy of the nanorods with ends and determined the critical aspect ratio below which five-twinned nanorods are stable. / Ph. D.
12

Molecular Dynamics Simulations of the Mechanical Deformation Behavior of Face-Centered Cubic Metallic Nanowires

Heidenreich, Joseph David 05 May 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Nanoscale materials have become an active area of research due to the enhanced mechanical properties of the nanomaterials in comparison to their respective bulk materials. The effect that the size and shape of a nanomaterial has on its mechanical properties is important to understand if these materials are to be used in engineering applications. This thesis presents the results of molecular dynamics (MD) simulations on copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes and four diameters. The cross-sectional shapes investigated were square, circular, and octagonal while the diameters varied from one to eight nanometers. Due to a high surface area to volume ratio, nanowires do not have the same atomic spacing as bulk materials. To account for this difference, prior to tensile loading, a minimization procedure was applied to find the equilibrium strain for each structure size and shape. Through visualization of the atomic energy before and after minimization, it was found that there are more than two energetically distinct areas within the nanowires. In addition, a correlation between the anisotropy of a material and its equilibrium strain was found. The wires were then subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 with a simulation temperature of 300 K. The embedded-atom method (EAM) was employed using the Foiles potential to simulate the stretching of the wires. The wires were stretched to failure, and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The MD simulations were also visualized to investigate the deformation and yield behavior of each nanowire. Through the visualization, most nanowires were found to yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the 5 nm diameter octagonal platinum nanowire was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {021} surfaces.
13

Atomistic Molecular Dynamics Studies of Grain Boundary Structure and Deformation Response in Metallic Nanostructures

Smith, Laura Anne Patrick 06 May 2014 (has links)
The research reported in this dissertation focuses on the response of grain boundaries in polycrystalline metallic nanostructures to applied strain using molecular dynamics simulations and empirical interatomic force laws. The specific goals of the work include establishing how local grain boundary structure affects deformation behavior through the quantitative estimation of various plasticity mechanisms, such as dislocation emission and grain boundary sliding. The effects of strain rate and temperature on the plastic deformation process were also investigated. To achieve this, molecular dynamics simulations were performed on both thin-film and quasi-2D virtual samples constructed using a Voronoi tessellation technique. The samples were subjected to virtual mechanical testing using uniaxial strain at strain rates ranging from 105s-1 to 109s-1. Seven different interatomic embedded atom method potentials were used in this work. The model potentials describe different metals with fcc or bcc crystal structures. The model was validated against experimental results from studying the tensile deformation of irradiated austenitic stainless steels performed by collaborators at the University of Michigan. The results from the model validation include a novel technique for detecting strain localization through adherence of gold nanoparticles to the surface of an experimental sample prior to deformation. Similar trends with respect to intergranular crack initiation were observed between the model and the experiments. Simulations of deformation in the virtual samples revealed for the first time that equilibrium grain boundary structures can be non-planar for model potentials representing fcc materials with low stacking fault energy. Non-planar grain boundary features promote dislocation as deformation mechanisms, and hinder grain boundary sliding. This dissertation also reports the effects of temperature and strain rate on deformation behavior and correlates specific deformation mechanisms that originate from grain boundaries with controlling material properties, deformation temperature and strain rate. / Ph. D.
14

Atomistische Simulationen der Diffusionsprozesse in SiGe Verbindungen

Engl, Moritz 12 October 2018 (has links)
Die vorliegende Bachelorarbeit beschäftigt sich mit der Untersuchung der Diffusionsprozesse in SiGe-Verbindungen mittels Molekulardynamiksimulationen. Für die Simulationen wird die freie Software LAMMPS verwendet in Kombination mit einem reaktiven Kraftfeld. Das Ziel der Si-mulationen ist einerseits herauszufinden, inwieweit eine Untersuchung von Diffusionsprozessen mit der heutigen Rechentechnik möglich ist, und andererseits zu untersuchen, wie gut das hier verwendete Kraftfeld die Diffusionsprozesse beschreibt. Darauf aufbauend sollen die Diffusi-onsmechanismen genauer erforscht werden. Untersuchungen der Gitterkonstante von SiGe-Systemen zeigen, dass das Temperaturverhalten von Silizium und Germanium nicht korrekt von dem verwendeten Potential wiedergegeben wird. Einerseits zeigen die Systeme kein Schmelzverhalten und andererseits ist die simulierte Gitter-konstante unabhängig von der Temperatur. Hingegen ergibt sich für die Germaniumabhängigkeit der Gitterkonstante ein linearer Verlauf, wie es in der Literatur angegeben wird. Simulationen eines Zweilagensystems, bestehend aus einer Lage Silizium und einer Lage Silizi-umgermanium, zeigen, dass die Diffusion des Germaniums in die Siliziumschicht zu langsam abläuft, um mit Molekulardynamik direkt untersucht zu werden. In weiteren Untersuchungen werden deshalb die einzelnen Diffusionsmechanismen genauer betrachtet. Die dabei ermittelten Diffusionskonstanten nehmen exponentiell, wie in der Literatur angegeben, mit der Temperatur zu. Weiterhin folgt aus den Simulationen, dass der Einbau von Germaniumatomen in Siliziumsysteme die Diffusionsmechanismen behindert. Dabei ergibt sich ein nichtlinearer Zusammenhang zwischen dem Anteil an Germaniumatomen und der Diffusi-onskonstante. Die berechneten Diffusionskonstanten können als Eingabewert für gröbere Modelle verwendet werden, wie zum Beispiel kinetic-Monte-Carlo-Simulationen.:I. ABKÜRZUNGSVERZEICHNIS II. SYMBOLVERZEICHNIS 1. EINLEITUNG 2. SIGE ALS KANALMATERIAL FÜR MOSFET-TRANSISTOREN 2.1. MOSFET IN DIGITALEN SCHALTUNGEN 2.2. KRISTALLSTRUKTUR VON SIGE-VERBINDUNGEN 2.2.1. Der Idealkristall 2.2.2. Der Realkristall 2.3. BILDUNG DES KANALS 2.3.1. Heteroepitaxie von SiGe auf Ge 2.3.2. SGOI Technologie 2.4. DIE ATOMISTISCHE DIFFUSION 3. GRUNDLAGEN DER MOLEKULARDYNAMIKSIMULATION 3.1. DAS REAXFF POTENTIAL 3.2. PHYSIKALISCHE ENSEMBLES 3.3. LAMMPS 4. SIMULATIONEN 4.1. GITTERKONSTANTE VON SIGE-VERBINDUNGEN 4.1.1. Modellsystem 4.1.2. Ergebnisse und Vergleich mit der Literatur 4.2. INTERDIFFUSION IN SIGE-HETEROSYSTEMEN 4.2.1. Modellsystem 4.2.2. Ergebnisse 4.3. EINZELSPRUNGBETRACHTUNG VON INTERSTITIALS 4.3.1. Modellsystem 4.3.2. Einzelsprungauswertung von Interstitials 4.3.3. Ergebnisse der Einzelsprungauswertung 4.4. MSD-BETRACHTUNG VON INTERSTITIALS 4.4.1. Modellsystem und Auswertemethode 4.4.2. Vergleich der MSD-Betrachtung mit der Einzelsprungbetrachtung und mit Literaturwerten 4.5. MSD-BETRACHTUNG VON LEERSTELLEN 4.5.1. Modellsystem und Auswertemethode 4.5.2. Ergebnisse und Vergleich mit Literatur 4.6. VERGLEICH DER DIFFUSION VON LEERSTELLEN UND INTERSTITIALS 5. ZUSAMMENFASSUNG UND AUSBLICKE 5.1. ZUSAMMENFASSUNG 5.2. AUSBLICKE 6. ABBILDUNGSVERZEICHNIS 7. TABELLENVERZEICHNIS 8. REFERENCES
15

Molekulardynamische Simulation der Oxidation dünner Siliziumnanodrähte: Einfluss von Draht- und Prozessparametern auf die Struktur

Heinze, Georg 28 January 2019 (has links)
Siliziumnanodrähte (SiNWs) bieten aufgrund ihrer exzellenten elektrostatischen Kontrollierbarkeit eine gute Grundlage für die Entwicklung neuartiger Bauelemente, wie rekonfigurierbarer Feldeffekttransistoren (RFETs). Da SiNWs durch die Oxidation gezielt verzerrt werden können und diese Verzerrung die Bandstruktur des Siliziums verändert, bietet der Oxidationsprozess eine Möglichkeit, die Leitungseigenschaften der RFETs zu modulieren und eine symmetrische Transfercharakteristik zu erhalten. Die Untersuchung von SiNWs mit Durchmessern im einstelligen Nanometerbereich bedarf eines atomistischen Ansatzes. In der vorliegenden Arbeit wird mit einem reaktiven Kraftfeld die initiale Phase der Oxidation dünner SiNWs molekulardynamisch simuliert. Gegenstand der Untersuchungen sind die Temperaturabhängigkeit der Oxidation von <110>-SiNWs mit Anfangsradien von 10.2 Å sowie das Oxidationsverhalten von <110>- und <100>-SiNWs mit Anfangsradien von 5.1 Å. Dabei wird neben dem Sauerstoffanteil im Simulationssystem und der radial aufgelösten Dichte auch das radial aufgelöste Verhältnis zwischen Sauerstoff- und Siliziumatomen während der gesamten Simulationsdauer untersucht und ein Zusammenhang zur Dichte festgestellt. Darüber hinaus wird bei 300 K erstmals eine Analyse der Verzerrungsentwicklung während der initialen Oxidationsphase durchgeführt, bei der sich sowohl für <110>-SiNWs als auch für <100>-SiNWs eine tensile Verzerrung im unoxidierten Drahtkern einstellt. Wie eine Analyse der partiellen radialen Verteilungsfunktion zeigt, kommt es zu dieser Verzerrung, weil während der Oxidation die Grundstruktur des Siliziums im Oxid erhalten bleibt, durch die Einlagerung des Sauerstoffs allerdings der Bindungsabstand erhöht wird. Dieser erhöhte Bindungsabstand wird durch Bindungen zu Siliziumatomen im Oxid auch Siliziumatomen im unoxidierten Kern aufgezwungen.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1. Einleitung 2. Theoretische Grundlagen 2.1. Molekulardynamik 2.2. Siliziumnanodrähte 2.3. Verzerrung und Verspannung 3. Modellsystem 3.1. Ausgangsstruktur 3.2. Vorrelaxation 3.3. Ablauf der Oxidation 4. Untersuchungsmethoden 4.1. Sauerstofffluenz, Oxidationsgrad und Oxidationsrate 4.2. Massendichte und Siliziumanteil 4.3. Radiale Verteilungsfunktion 4.4. Verzerrung 4.4.1. <110>-Draht 4.4.2. <100>-Draht 5. Ergebnisse und Diskussion 5.1. Festlegung des Einsetzintervalls 5.2. Temperaturvariation 5.2.1. Oxidationsgrad 5.2.2. Siliziumanteil 5.2.3. Massendichte 5.2.4. Radiale Verteilungsfunktion 5.3. Radius- und Orientierungsvariation 5.4. Verzerrung 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick A. Festlegung des Einsetzintervalls Literaturverzeichnis
16

Atomistic modelling of precipitation in Ni-base superalloys

Schmidt, Eric January 2019 (has links)
The presence of the ordered $\gamma^{\prime}$ phase ($\text{Ni}_{3}\text{Al}$) in Ni-base superalloys is fundamental to the performance of engineering components such as turbine disks and blades which operate at high temperatures and loads. Hence for these alloys it is important to optimize their microstructure and phase composition. This is typically done by varying their chemistry and heat treatment to achieve an appropriate balance between $\gamma^{\prime}$ content and other constituents such as carbides, borides, oxides and topologically close packed phases. In this work we have set out to investigate the onset of $\gamma^{\prime}$ ordering in Ni-Al single crystals and in Ni-Al bicrystals containing coincidence site lattice grain boundaries (GBs) and we do this at high temperatures, which are representative of typical heat treatment schedules including quenching and annealing. For this we use the atomistic simulation methods of molecular dynamics (MD) and density functional theory (DFT). In the first part of this work we develop robust Bayesian classifiers to identify the $\gamma^{\prime}$ phase in large scale simulation boxes at high temperatures around 1500 K. We observe significant \gamma^{\prime} ordering in the simulations in the form of clusters of $\gamma^{\prime}$-like ordered atoms embedded in a $\gamma$ host solid solution and this happens within 100 ns. Single crystals are found to exhibit the expected homogeneous ordering with slight indications of chemical composition change and a positive correlation between the Al concentration and the concentration of $\gamma^{\prime}$ phase. In general, the ordering is found to take place faster in systems with GBs and preferentially adjacent to the GBs. The sole exception to this is the $\Sigma3 \left(111\right)$ tilt GB, which is a coherent twin. An analysis of the ensemble and time lag average displacements of the GBs reveals mostly `anomalous diffusion' behaviour. Increasing the Al content from pure Ni to Ni 20 at.% Al was found to either consistently increase or decrease the mobility of the GB as seen from the changing slope of the time lag displacement average. The movement of the GB can then be characterized as either `super' or `sub-diffusive' and is interpreted in terms of diffusion induced grain boundary migration, which is posited as a possible precursor to the appearance of serrated edge grain boundaries. In the second part of this work we develop a method for the training of empirical interatomic potentials to capture more elements in the alloy system. We focus on the embedded atom method (EAM) and use the Ni-Al system as a test case. Recently, empirical potentials have been developed based on results from DFT which utilize energies and forces, but neglect the electron densities, which are also available. Noting the importance of electron densities, we propose a route to include them into the training of EAM-type potentials via Bayesian linear regression. Electron density models obtained for structures with a range of bonding types are shown to accurately reproduce the electron densities from DFT. Also, the resulting empirical potentials accurately reproduce DFT energies and forces of all the phases considered within the Ni-Al system. Properties not included in the training process, such as stacking fault energies, are sometimes not reproduced with the desired accuracy and the reasons for this are discussed. General regression issues, known to the machine learning community, are identified as the main difficulty facing further development of empirical potentials using this approach.
17

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 04 January 2018 (has links) (PDF)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.
18

Studying Atomic Vibrations by Transmission Electron Microscopy

Cardoch, Sebastian January 2016 (has links)
We employ the empirical potential function Airebo to computationally model free-standing Carbon-12 graphene in a classical setting. Our objective is to measure the mean square displacement (MSD) of atoms in the system for different average temperatures and Carbon-13 isotope concentrations. From results of the MSD we aim to develop a technique that employs Transmission Electron Microscopy (TEM), using high-angle annular dark filed (HAADF) detection, to obtain atomic-resolution images. From the thermally diffusive images, produced by the vibrations of atoms, we intent to resolve isotopes types in graphene. For this, we establish a relationship between the full width half maximum (FWHM) of real-space intensity images and MSD for temperature and isotope concentration changes. For the case of changes in the temperature of the system, simulation results show a linear relationship between the MSD as a function of increased temperature in the system, with a slope of 7.858×10-6 Å2/K. We also note a power dependency for the MSD in units of [Å2] with respect to the FWHM in units of [Å] given by FWHM(MSD)=0.20MSD0.53+0.67. For the case of increasing isotope concentration, no statistically significant changes to the MSD of 12C and 13C are noted for graphene systems with 2,000 atoms or more. We note that for the experimental replication of results, noticeable differences in the MSD for systems with approximately 320,000 atoms must be observable. For this, we conclude that isotopes in free-standing graphene cannot be distinguished using TEM.
19

Study of organic matter decomposition under geological conditions from replica exchange molecular dynamics simulations / Etude de la décomposition de matière organique dans des conditions géologiques par simulations numériques de replica exchange molecular dynamics

Atmani, Léa 15 May 2017 (has links)
Pétrole et gaz proviennent de la décomposition de la matière organique dans la croûte terrestre. En s’enfouissant, les résidus organiques se décomposent en un solide poreux et carboné, appelé kérogène et en un fluide composé d’hydrocarbures et de petites molécules telles que de l’eau. Le processus de formation du kérogène n’est pas totalement élucidé et une modélisation aiderait à une meilleure compréhension à la fois de sa structure et de sa composition et serait utile à l’industrie pétrolière.Dans le présent travail, nous adoptons une approche thermodynamique ayant pour but, à l’aide de simulations numériques, de d’étudier la décomposition de précurseurs de kérogène d’un type donné –ici le type III- dans les conditions d’un réservoir géologique. La méthode dite de Replica Exchange Molecular Dynamics (REMD) est appliquée pour étudier la décomposition de cristaux de cellulose et de lignine. Le potentiel d’interaction ReaxFF et le code LAMMPS sont utilisés. La REMD est une façon de surmonter de larges barrières d’énergie libre, en améliorant l’échantillonnage de configurations d’une dynamique moléculaire conventionnelle à température constante, en utilisant des états générés à températures supérieures.En fin de simulation, les systèmes ont atteint un état d’équilibre entre deux phases : une phase riche en carbone, composée d’amas de macromolécules, que nous appelons « solide » et d’une phase riche en oxygène et en hydrogène, composée de petites molécules, que nous dénommons « fluide ». L’évolution des parties solides de nos systèmes coïncide avec celle d’échantillons naturels de kérogènes de type III. / In deep underground, organic residues decompose into a carbonaceous porous solid, called kerogen and a fluid usually composed of hydrocarbons and other small molecules such as water, carbon monoxide. The formation process of the kerogen remains poorly understood. Modeling its geological maturation could widen the understanding of both structure and composition of kerogen, and could be useful to oil and gas industry.In this work we adopt a purely thermodynamic approach in which we aim, through molecular simulations, at determining the thermodynamic equilibrium corresponding to the decomposition of given organic precursors of a specific type of kerogen –namely type III- under reservoir conditions. Starting from cellulose and lignin crystal structures we use replica exchange molecular dynamics (REMD) simulations, using the reactive force field ReaxFF and the open-source code LAMMPS. The REMD method is a way ofovercoming large free energy barriers, by enhancing the configurational sampling of a conventional constant temperature MD using states from higher temperatures.At the end of the simulations, we have reached for both systems, a stage where they can clearly be cast into two phases: a carbon-rich phase made of large molecular clusters that we call here the "solid" phase, and a oxygen and hydrogen rich phase made of small molecules that we call "fluid" phase.The evolution of solid parts for both systems and the natural evolution of a type III kerogen clearly match. Evolution of our systems follows the one of natural samples, as well as the one of a type III kerogen submitted to an experimental confined pyrolysis.
20

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 24 July 2017 (has links)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.:Abbildungsverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Einführung zu Siliziumnanodrähten 2.1 Kristallstuktur von Silizium 2.2 Ideale Siliziumnanodrähte 2.3 Herstellung von Siliziumnanodrähten 3 Grundlagen der Molekulardynamik 3.1 Newtonsche Axiome 3.2 Einige grundlegende Begriffe der statistischen Physik 3.3 Molekulardynamik 3.4 Reaktives Kraftfeld 3.5 Methoden zur Beschreibung des Ladungstransfers 3.6 Thermostat und Barostat 3.7 Large-scale Atomic/Molecular Massively Parallel Simulator 4 Entwicklung des Modellsystems 4.1 Ausgangsstruktur 4.2 Vorrelaxation 4.3 Ablauf der Oxidation 4.4 Verwendeter ReaxFF-Parametersatz 4.5 Optimierung der Zeitschrittweite 4.5.1 Modellsystem, Relaxation und Oxidation 4.5.2 Festlegung der Zeitschrittweite 4.6 Optimierung der Systemlänge 4.6.1 Modellsystem, Relaxation und Oxidation 4.6.2 Festlegung der Systemlänge 4.7 Einfluss des globalen, instantanen Ladungstransfers auf die Simulation 4.7.1 Festlegung des Einsetzabstands 4.7.2 Vergleich mit Daten von Khalilov et al. 5 Variation von System- und Einsetztemperatur sowie Drahtorientierung 5.1 Variation von System- und Einsetztemperatur 5.1.1 Untersuchung des Oxidationsgrads 5.1.2 Untersuchung von Dichten und Grenzflächenpositionen 5.2 Variation der Drahtorientierung 5.2.1 Untersuchung des Oxidationsgrads 5.2.2 Untersuchung von Dichten und Grenzflächenpositionen 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Literaturverzeichnis

Page generated in 0.0212 seconds