• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 142
  • 85
  • 20
  • 13
  • 11
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 526
  • 192
  • 126
  • 82
  • 72
  • 65
  • 59
  • 57
  • 52
  • 50
  • 40
  • 39
  • 39
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Optical and thermal characteristics of thin polymer and polhedral oligomeric silsesquioxane (POSS) filled polymer films

Karabiyik, Ufuk 06 June 2008 (has links)
Single wavelength ellipsometry measurements at Brewster's angle provide a powerful technique for characterizing ultrathin polymeric films. By conducting the experiments in different ambient media, multiple incident media (MIM) ellipsometry, simultaneous determinations of a film's thickness and refractive index are possible. Poly(tert-butyl acrylate) (PtBA) films serve as a model system for the simultaneous determination of thickness and refractive index (1.45 at 632 nm). Thickness measurements on films of variable thickness agree with X-ray reflectivity results. The method is also applicable to spincoated films where refractive indices of PtBA, polystyrene and poly(methyl methacrylate) are found to agree with literature values within experimental error. Likewise, MIM ellipsometry is utilized to simultaneously obtain the refractive indices and thicknesses of thin films of trimethylsilylcellulose (TMSC), regenerated cellulose, and cellulose nanocrystals where Langmuir-Blodgett (LB) films of TMSC serve as a model system. Ellipsometry measurements not only provide thickness and optical constants of thin films, but can also detect thermally induced structural changes like surface glass transition temperatures (Tg) and layer deformation in LB-films. Understanding the thermal properties of the polymer thin films is crucial for designing nanoscale coatings, where thermal properties are expected to differ from their corresponding bulk properties because of greater fractional free volume in thin films and residual stresses that remain from film preparation. Polyhedral oligomeric silsesquioxane (POSS) derivatives may be useful as a nanofiller in nanocomposite formulations to enhance thermal properties. As a model system, thin films of trisilanolphenyl-POSS (TPP) and two different molar mass PtBA were prepared as blends by Y-type Langmuir-Blodgett film deposition. For comparison, bulk blends were prepared by solution casting and the samples were characterized via differential scanning calorimetry (DSC). Our observations show that surface Tg is depressed relative to bulk Tg and that magnitude of depression is molar mass dependent for pure PtBA films. By adding TPP as a nanofiller both bulk and surface Tg increase. Whereas, bulk Tg shows comparable increases for both molar masses, the increase in surface Tg for higher molar mass PtBA is greater than for lower molar mass PtBA. These studies show that POSS can serve as a model nanofiller for controlling Tg in nanoscale coatings. / Ph. D.
332

Stability and Morphological Evolution in Polymer/Nanoparticle Bilayers and Blends Confined to Thin Film Geometries

Paul, Rituparna 13 September 2007 (has links)
Thin film bilayers and blends composed of polymers and nanoparticles are increasingly important for technological applications that range from space survivable coatings to novel drug delivery systems. Dewetting or spontaneous hole formation in amorphous polymer films and phase separation in multicomponent polymer films can hinder the stability of these systems at elevated temperatures. Hence, fundamental understanding of dewetting and phase separation in polymer/nanoparticle bilayer and blend films is crucial for controlling transport and thermomechanical properties and surface morphologies of these systems. This dissertation provides studies on morphological evolution driven by phase separation and/or dewetting in model polymer/nanoparticle thin film bilayers and blends at elevated temperatures. Morphological evolution in dewetting bilayers of poly(t-butyl acrylate) (PtBA) or polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP) is explored at elevated temperatures. The results demonstrate unique dewetting morphologies in both PtBA/TPP and PS/TPP bilayers that are significantly different from those typically observed in dewetting polymer/polymer bilayers. Upon annealing the PtBA/TPP bilayers at 95°C, a two-step dewetting process is observed. PtBA immediately diffuses into the upper TPP layer leading to hole formation and subsequently the holes merge to form interconnected rim structures in the upper TPP layer. Dewetting of both the TPP and PtBA layers at longer annealing times leads to the evolution of scattered holes containing TPP-rich, fractal aggregates. The fractal dimensions of the TPP-rich, fractal aggregates are ~2.2 suggesting fractal pattern formation via cluster-cluster aggregation. Dewetting in PS/TPP bilayers also proceeds via a two-step process; however, the observed dewetting morphologies are dramatically different from those observed in PtBA/TPP bilayers. Cracks immediately form in the upper TPP layer during annealing of PS/TPP bilayers at 200°C. With increasing annealing times, the cracks in the TPP layer act as nucleation sites for dewetting and aggregation of the TPP layer and subsequent dewetting of the underlying PS layer. Complete dewetting of both the TPP and PS layers results in the formation of TPP encapsulated PS droplets. Phase separation in PtBA/TPP thin film blends is investigated as functions of annealing temperature and time. The PtBA/TPP thin film blend system exhibits an upper critical solution temperature (LCST) phase diagram with a critical composition and temperature of 60 wt% PtBA and ~70°C, respectively. Spinodal decomposition (SD) is observed for 60 wt% PtBA blend films and off-critical SD is seen for 58 and 62 wt% PtBA blend films. The temporal evolution of SD in 60 wt% PtBA blend films is also explored. Power law scaling for the characteristic wavevector with time (q ~ t^n with n = -1/4 to -1/3) during the early stages of phase separation yields to domain pinning at the later stages for films annealed at 75, 85, and 95°C. In contrast, domain growth is instantly pinned for films annealed at 105°C. Our work provides an important first step towards understanding how nanoparticles affect polymer thin film stability and this knowledge may be utilized to fabricate surfaces with tunable morphologies via controlled dewetting and/or phase separation. / Ph. D.
333

Phase Behavior of Poly(Caprolactone) Based Polymer Blends As Langmuir Films at the Air/Water Interface

Li, Bingbing 26 March 2007 (has links)
Poly (caprolactone) (PCL) has been widely studied as a model system for investigating polymer crystallization. In this thesis, PCL crystallization along with other phase transitions in PCL-based polymer blends are studied as Langmuir films at the air/water (A/W) interface. In order to understand the phase behavior of PCL-based blends, surface pressure induced crystallization of PCL in single-component Langmuir monolayers was first studied by Brewster angle microscopy (BAM). PCL crystals observed during film compression exhibit butterfly-shapes. During expansion of the crystallized film, polymer chains detach from the crystals and diffuse back into the monolayer as the crystals "melt". Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the chain axes perpendicular to the substrate surface, while atomic force microscopy (AFM) reveals a crystal thickness of ~ 7.6 nm. In addition, the competition between lower segmental mobility and a greater degree of undercooling with increasing molar mass produces a maximum average growth rate at intermediate molar mass. PCL was blended with poly(t-butyl acrylate) (PtBA) to study the influence of PtBA on the morphologies of PCL crystals grown in monolayers. For PCL-rich blends, BAM studies reveal dendritic morphologies of PCL crystals. The thicknesses of the PCL dendrites are ~ 7-8 nm. BAM studies during isobaric area relaxation experiments at different surface pressure reveal morphological transitions from highly branched dendrites, to six-arm dendrites, four-arm dendrites, seaweedlike crystals, and distorted rectangular crystals. In contrast, PCL crystallization is suppressed in PtBA-rich blend films. For immiscible blends of PCL and polystyrene (PS) with intermediate molar masses as Langmuir films, the surface concentration of PCL is the only factor influencing surface pressure below the collapse transition. For PS-rich blends, both BAM and AFM studies reveal that PS nanoparticle aggregates formed at very low surface pressure form networks during film compression. For PCL-rich blends, small PS aggregates serve as heterogeneous nucleation centers for the growth of PCL crystals. During film expansion, BAM images show a gradual change in the surface morphology from highly continuous networklike structures (PS-rich blends) to broken ringlike structures (intermediate composition) to small discontinuous aggregates (PCL-rich blends). / Ph. D.
334

Polymères amphiphiles : des films Langmuir-Blodgett au transistor

Ouattara, Mariane 23 April 2018 (has links)
Au cours des 25 dernières années, l’intérêt pour l’utilisation de semi-conducteurs organiques comme couche active dans les transistors à effet de champ (TOECs), à la place du silicium, a crû spectaculairement. L’utilisation de polymères π-conjugués dans ce domaine a grandement entraîné cet essor. Au fil du temps, on observe une amélioration des performances atteintes contribuant à l’émergence de nouveaux matériaux. Par contre, différents paramètres tels que la mobilité et la stabilité demeurent moins impressionnants que ceux des semi-conducteurs à base de matériaux inorganiques. De meilleurs résultats pourraient être obtenus si le transport de charges se faisait sans entraves. Ainsi, une très bonne organisation au sein des matériaux utilisés est nécessaire. Dans cette optique, des polymères conjugués amphiphiles constitués d’unités thiéno [3,4-c] pyrrole-4,6-dione (TPD) ont été synthétisés. En se servant de la technique Langmuir-Blodgett (LB) pour optimiser l’organisation des molécules au sein des films, il a été possible de réaliser des films stables avec des pressions de collapse de 60 mN/m. Les microscopies à angle de Brewster (BAM) et à force atomique (AFM) nous ont démontré l’homogénéité des films à l’interface air-eau (BAM) et une fois transférés sur un substrat solide (AFM). L’orientation a été étudiée principalement par spectroscopie infrarouge à réflexion totale atténuée (ATR). D’autres techniques spectroscopiques comme l’UV-visible, la spectroscopie infrarouge de réflexion absorption par modulation de polarisation (PM-IRRAS) et l’ellipsométrie ont permis de corroborer les résultats obtenus via l’ATR. Les mesures ont permis de confirmer l’obtention de l’orientation préférentielle hors du plan. Pour compléter ce projet, des tests ont été effectués avec des transistors organiques. Des valeurs de mobilité intéressantes de 1,2 × 10-3 cm2/(V.s) ont été enregistrées pour des transistors obtenus à partir de films LB. / Over the past 25 years, interest in the use of organic semiconductors as active layers in field effect transistors (TFTs) instead of silicon has grown dramatically. The use of π-conjugated polymers in this area has greatly driven this growth. Over time, there has been an improvement in performance achieved contributing to the emergence of new materials. However, the performances of organic semiconductors remains inferior that of their inorganic counterpart regarding parameters such as the mobility and stability. Better results could be achieved if the charge transport was done without hindrance. Thus, a very good organiza- tion within the material is needed. In this regard, amphiphilic polymers based on thieno [3,4-c] pyrrole-4,6-dione (TPD) units were synthesized. By using the Langmuir-Blodgett technique (LB) to optimize the organization of the molecules within the films, it was possible to achieve stable films with a collapse pressure of 60 mN/m. Brewster angle (BAM) and atomic force (AFM) microscopies have demonstrated that homogeneous films are obtained at the air-water interface (BAM) and remain so once transferred onto a solid substrate (AFM). Orientation has been studied mainly by attenuated total reflection infrared spectroscopy (ATR). Other spectroscopic techniques such as UV-visible, absorption polarization modulation infrared reflection spectroscopy (PM-IRRAS) and ellipsometry have confirmed the ATR results. Measurements show that molecules adopted an edge-on orientation in the polymer films. To complete this project, organic transistors were fabricated. Interesting mobility values of 1.2 × 10-3 cm2/(V.s) were recorded for organic LB film transistors.
335

Structure and Persistence of Surface Ship Wakes

Somero, John Ryan 20 January 2021 (has links)
It has long been known that ship wakes are observable by synthetic aperture radar. However, incomplete physical understanding has prevented the development of simulation tools that can predict both the structure and persistence of wakes in the ocean environment. It is the focus of this work to develop an end-to-end multi-scale modeling-and-simulation methodology that captures the known physics between the source of disturbance and the sensor. This includes turbulent hydrodynamics, free-surface effects, environmental forcing through Langmuir-type circulations, generation of surface currents and redistribution of surface-active substances, surface-roughness modification, and simulation of the signature generated by reflection and scattering of electromagnetic waves from the ocean surface. The end-to-end methodology is based upon several customized computational fluid dynamics solvers and empirical models which are linked together. The unsteady Reynolds-averaged Navier-Stokes equations, including models for the Craik-Leibovich vortex force and near surface Reynolds-stress anisotropy, are solved at full-scale Reynolds and Froude numbers on domains that extend tens of kilometers behind the ship. A parametric study is undertaken to explore the effects of ship heading, ship propulsion, ocean-wave amplitude and wavelength, and the relative importance of Langmuir-type circulations vs. near-surface Reynolds-stress anisotropy on the generation of surface currents that are transverse to the wake centerline. Due to the vortex force, the structure of the persistent wake is shown to be a function of the relative angle between the ambient long-wavelength swell and the ship heading. Ships operating in head seas observe 1-3 streaks, while ships operating in following seas observe 2 symmetric streaks. Ships operating in calm seas generate similar wakes to those in following seas, but with reduced wake width and persistence. In addition to the structure of the persistent wake, the far wake is shown to be dominated by ship-induced turbulence and surface-current gradients generating a wide center wake. The redistribution of surface-active substances by surface currents is simulated using a scalar-transport model on the ocean surface. Simulation of surface-roughness modification is accomplished by solving a wave-action balance model which accounts for the relative change in the ambient wave-spectrum by the surface currents and the damping-effects of surface-active substances and turbulence. Simulated returns from synthetic aperture radar are generated with two methods implemented. The first method generates a perfect SAR image where the instrument and platform based errors are neglected, but the impact of a randomized ocean field on the radar cross section is considered. The second method simulates the full SAR process including signal detection and processing. Comparisons are made to full-scale field experiments with good agreement between the structure of the persistent wake and observed SAR imagery. / 1 / It has long been known that ship wakes are observable by synthetic aperture radar. However, incomplete physical understanding has prevented the development of simulation tools that can predict both the structure and persistence of wakes in the ocean environment, which is critical to understanding both the design and operation of maritime remote sensors as well as providing tactically relevant operational guidance and awareness of the maritime domain. It is the focus of this work to develop an end-to-end multi-scale modeling-and simulation methodology that captures the known physics between the source of disturbance and the sensor. This includes turbulent hydrodynamics, free-surface effects, environmental forcing, generation of surface currents and redistribution of surface-active substances, surface-roughness modification, and simulation of the signature from the ocean surface. The end-to-end methodology is based upon several customized computational fluid dynamics solvers and empirical models. The unsteady Reynolds-averaged Navier-Stokes equations, including models to account for environmental effects and near-surface turbulence, are solved at full-scale on domains that extend tens of kilometers behind the ship. A parametric study is undertaken to explore the effects of ship heading, ship propulsion, ocean-wave amplitude and wavelength, and the relative importance of environmental forcing vs. near-surface turbulence on the generation of surface currents that are transverse to the wake centerline. Due to the environmental forcing, the structure of the persistent wake is shown to be a function of the relative angle between the ambient long-wavelength swell and the ship heading. Ships operating in head seas observe 1-3 streaks, while ships operating in following seas observe 2 symmetric streaks. Ships operating in calm seas generate similar wakes to those in following seas, but with reduced wake width and persistence. In addition to the structure of the persistent wake, the far wake is shown to be dominated by ship-induced turbulence and surface-current gradients generating a wide center wake. The redistribution of surface films by surface currents is simulated using a scalar-transport model on the ocean surface. Simulation of surface-roughness modification is accomplished by solving a wave-action-balance model which accounts for the relative change in the ambient surface profile by the surface currents and the damping-effects of surface-active substances and turbulence. Simulated returns from synthetic aperture radar are generated with two methods implemented. The first method generates a perfect SAR image where the instrument and platform based errors are neglected, but the impact of a randomized ocean field on the radar cross section is considered. The second method simulates the full SAR process including signal detection and processing. Comparisons are made to full-scale field experiments with good agreement between the structure of the persistent wake and observed SAR imagery.
336

Nanoscale Confinement Effects on Poly(ε-Caprolactone) Crystallization at the Air/Water Interface & Surfactant Interactions with Phospholipid Bilayers

Xie, Qiongdan 30 March 2010 (has links)
Two-dimensional (2D) nanoscale confinement effects on poly(ε-caprolactone) (PCL) crystallization were probed through crystallization studies of PCL-b-poly(tert-butyl acrylate) (PCL-b-PtBA) copolymers, PCL with bulky tri-tert-butyl ester endgroups (PCL triesters), PCL with triacid end groups (PCL triacids), and magnetic nanoparticles stabilized by PCL triacid (PCL MNPs) at the air/water (A/W) interface. Thermodynamic analyses of surface pressure-area per monomer (Π−A)) isotherms for the Langmuir films at the A/W interface showed that PCL-b-PtBA copolymers, PCL triheads and PCL MNPs all formed homogenous monolayers below the dynamic collapse pressure of PCL, Π<sub>C</sub> ~11 mN•m⁻¹. For compression past the collapse point, the PCL monolayers underwent a phase transition to three-dimensional (3D) crystals and the nanoscale confinements impacted the PCL crystalline morphologies. Studies of PCL-b-PtBA copolymers revealed that the morphologies of the LB-films became smaller and transitioned to dendrites with defects, stripes and finally nano-scale cylindrical features as the block length of PtBA increased. For the case of PCL triester, irregularly shaped crystals formed at the A/W interface and this was attributed to the accumulation of bulky tert-butyl ester groups around the crystal growth fronts. In contrast, regular, nearly round-shaped lamellar crystals were obtained for PCL triacids. These morphological differences between PCL triacids and PCL triesters were molar mass dependent and attributed to differences in dipole density and the submersion of carboxylic acid groups in the subphase. Nonetheless, enhanced uniformity for PCL triacid crystals was not retained once the polymers were tethered to the spherical surface of a PCL MNP. Instead, the PCL MNPs exhibited small irregularly shaped crystals. This nano-scale confinement effect on the surface morphology at the A/W interface was also molar mass dependent. For the small molar mass PCL MNPs, two layers of collapsed nanoparticles were observed. In a later chapter, studies of polyethylene glycol (PEG) surfactant adsorption onto phospholipid bilayers through quartz crystal microbalance with dissipation monitoring (QCM-D) measurements revealed a strong dependence of the adsorption and desorption kinetics on hydrophobic tail group structure. PEG surfactants with a single linear alkyl tail inserted and saturated the bilayer surface quickly and the surfactants had relatively fast desorption rates. In contrast, PEG lipids, including dioleoyl PEG lipids and cholesterol PEGs, demonstrated slower adsorption and desorption kinetics. The interactions of Pluronics and Nonoxynol surfactants with phospholipid bilayers were also studied. Pluronics showed no apparent affinity for the phospholipid bilayer, while the Nonoxynol surfactants damaged the lipid bilayers as PEG chain length decreased. / Ph. D.
337

Phase and Rheological Behavior of Langmuir Films at the Air/Water Interface: Polyhederal Oligomeric Silsesquioxanes (POSS), POSS/Polymer Blends, and Magnetic Nanoparticles

Yin, Wen 12 June 2009 (has links)
For over a century, Langmuir films have served as excellent two-dimensional model systems for studying the conformation and ordering of amphiphilic molecules at the air/water (A/W) interface. With the equipment of Wilhelmy plate technique, Brewster angle microscopy (BAM), and surface light scattering (SLS), the interfacial phase and rheological behavior of Langmuir films can be investigated. In this dissertation, these techniques are employed to examine Langmuir films of polyhedral oligomeric silsesquioxane (POSS), polymer blends, and magnetic nanoparticles (MNPs). In a first time, SLS is employed to study POSS molecules. The interfacial rheological properties of trisilanolisobutyl-POSS (TiBuP) indicate that TiBuP forms a viscoelastic Langmuir film that is almost perfectly elastic in the monolayer state with a maximum dynamic dilational elasticity of around 50 mNâ m-1 prior to film collapse. This result suggests that TiBuP can serve as model nanofiller with polymers. As an interesting next step, blends of TiBuP and polydimethylsiloxane (PDMS) with different compositions are examined via surface pressure (surface pressureâ surface area occupied per molecule (A) isotherms and SLS. The results show that TiBuP, with its attendant water, serves as a plasticizer and lowers the dilational modulus of the films at low surface pressure. As surface pressure increases, composition dependent behavior occurs. Around the collapse pressure of PDMS, the TiBuP component is able to form networks at the A/W interface as PDMS collapse into the upper layer. Blends of non-amphiphilic octaisobutyl-POSS (OiBuP) and PDMS are also studied as an interesting comparison to TiBuP/PDMS blends. In these blends, OiBuP serves as a filler and reinforces the blends prior to the collapse of PDMS by forming "bridge" structure on top of PDMS monolayer. However, OiBuP is non-amphiphilic and fails to anchor PDMS chains to the A/W interface. Hence, OiBuP/PDMS blends exhibit negligible dilational viscoelasticity after the collapse of PDMS. Furthermore, the phase behavior of PDMS blended with a trisilanol-POSS derivative containing different substituents, trisilanolcyclopentyl-POSS (TCpP), is also investigated via the Wilhelmy plate technique and BAM. These TCpP/PDMS blends exhibit dramatically different phase behavior and morphological features from previously studied POSS/PDMS blends, showing that the organic substituents on trisilanol-POSS have considerable impact on the phase behavior of POSS/PDMS blends. The interfacial rheological behavior of tricarboxylic acid terminated PDMS (PDMS-Stabilizer) and PDMS stabilized MNPs are investigated and compared with "regular" PDMS containing non-polar end groups. The tricarboxylic acid end group of the PDMS-Stabilizer leads to a different collapse mechanism. The PDMS stabilized MNPs exhibit viscoelastic behavior that is similar to PDMS showing all the tricarboxylic acid end groups are bound to the magnetite cores. Studying the interfacial behavior of different Langmuir films at the A/W interface provides us insight into the impact of molecule-molecule and molecule-subphase interactions on film morphology and rheology. These results are able to serve as important guides for designing surface films with preferred morphological and mechanical properties. / Ph. D.
338

Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane (POSS) Based Amphiphiles

Liu, Yang 23 September 2011 (has links)
Polyhedral oligomeric silsesquioxanes (POSS) have attracted substantial academic interest for many years as hybrid materials and nanofillers for controlling thermal and mechanical properties, and providing thermal and chemical resistance while retaining ease of processing. A natural extension of these studies has been POSS-based amphiphiles and thin film coatings. Studies at the air/water (A/W) interface have shown that trisilanol-POSS derivatives are amphiphilic and form uniform Langmuir films, whereas closed-cage POSS derivatives are hydrophobic and aggregate. In previous work, a triester (POSS-triester) and a triacid (POSS-triacid) were synthesized from PSS-(3-hydroxypropyl)-heptaisobutyl (POSS-OH) and Weisocyanate and fully characterized by surface pressure – area per molecule (Π-A) isotherm and Brewster angle microscopy (BAM) studies at the A/W interface. The results indicated that POSS-triester is surface active forming a liquid expanded (LE) monolayer, whereas POSS-triacid forms a liquid condensed (LC) monolayer that is only weakly affected by pH. A face-on conformation was proposed and examined to understand the packing of POSS-based amphiphilic molecules at the A/W interface. The face-on/vertex-on comparison is rarely discussed for Langmuir monolayers at the A/W interface. In this thesis, three other POSS-based esters were synthesized from POSS-OH and aminopropylisobutyl-POSS (POSS-NH₂) using Weisocyanate and a similar isocyanate containing two tert-butyl protected carboxylic acids. The synthesized materials are characterized by Π-A isotherm and BAM. For POSS-OH based diester (PAlDE) and POSS-NH2 based diester (PAmDE), LE/LC phase transitions were observed in Π-A isotherms over part of the experimentally accessible temperature range and were attributed to a change from a vertex-on to face-on conformation. Apparent BAM images confirmed LC islands coexisted with the LE phase. The experimentally observed dynamic estimates of the critical temperatures (Tc) were estimated from a two-dimensional Clausius-Clapeyron analysis and were consistent with the temperature dependence of the Π-A isotherms. These LE/LC phase transitions are the first observed for POSS amphiphiles. / Ph. D.
339

Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane (POSS) Based Amphiphiles

Liu, Yang 05 January 2011 (has links)
Polyhedral oligomeric silsesquioxanes (POSS) have attracted substantial academic interest for many years as hybrid materials and nanofillers for controlling thermal and mechanical properties, and for providing thermal and chemical resistance while retaining ease of processing. A natural extension of these studies has been working on POSS-based amphiphiles and thin film coatings. Studies at the air/water (A/W) interface have shown that trisilanol-POSS derivatives are amphiphilic and form uniform Langmuir films, whereas closed-cage POSS derivatives are hydrophobic and aggregate. In this study, two novel POSS derivatives were synthesized from PSS-(3-hydroxypropyl)-heptaisobutyl substituted (POSS-OH) and completely characterized. Weisocyanate reacted with POSS-OH, and a POSS-based triester (POSS-triester) was obtained. Trifluoroacidolysis of the POSS-triester at room temperature afforded the corresponding triacid (POSS-triacid). Purified POSS-OH, POSS-triester, and POSS-triacid were studied by using surface pressure - area per molecule (? -A) isotherms as well as Brewster angle microscopy (BAM) at the air/water (A/W) interface. Compared with previous work on trisilanol-POSS derivatives, the results indicated that POSS-triester was surface active and formed a liquid-expanded (LE) monolayer. In contrast, POSS-triacid monolayers were more condensed (LC) and were not dramatically affected by changes in pH. Results for the lift-off areas (Alift-off), limiting areas (A0), collapse areas (Ac), and collapse pressures (? c) of POSS-OH, POSS-triester, and POSS-triacid were compared to trisilanolisobutyl-POSS (TiBP) and were interpreted in terms of possible molecular conformations. Whereas, TiBP has been hypothesized to exist in a vertex-on conformation, POSS-OH and POSS-triacid packing at the A/W interface was consistent with face-on conformations. For POSS-triester, the isotherm was consistent with a vertex-on conformation at low ? , but a face-on conformation at high ? . / Master of Science
340

Quartz Crystal Microbalance Studies of Dimethyl Methylphosphonate Sorption Into Trisilanolphenyl-Poss Films

Kittle, Joshua D. 04 December 2006 (has links)
Developing methods to detect, adsorb, and decompose chemical warfare agents (CWAs) is of critical importance to protecting military and civilian populations alike. The sorption of dimethyl methylphosphonate (DMMP), a CWA simulant, into trisilanolphenyl-POSS (TPP) films has previously been characterized with reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and uptake coefficient determinations [1]. In our study, the quartz crystal microbalance (QCM) is used to study the sorption phenomena of DMMP into highly ordered Langmuir-Blodgett (LB) films of TPP. In a saturated environment, DMMP sorbs into the TPP films, binding to TPP in a 1:1 molar ratio. Although previous work indicated these DMMP-saturated films were stable for several weeks, DMMP is found to slowly desorb from the TPP films at room temperature and pressure. Upon application of vacuum to the DMMP-saturated films, DMMP follows first-order desorption kinetics and readily desorbs from the film, returning the TPP film to its original state. [1] Ferguson-McPherson, M.; Low, E.; Esker, A.; Morris, J. J. Phys. Chem. B. 2005, 109, 18914. / Master of Science

Page generated in 0.0557 seconds