• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 63
  • 63
  • 17
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Das Spektrum von Dirac-Operatoren

Bär, Christian. January 1991 (has links)
Thesis (Doctoral)--Universität Bonn, 1990. / Includes bibliographical references.
32

Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian

Yildirim Yolcu, Selma 11 November 2009 (has links)
Some eigenvalue inequalities for Klein-Gordon operators and fractional Laplacians restricted to a bounded domain are proved. Such operators became very popular recently as they arise in many problems ranging from mathematical finance to crystal dislocations, especially relativistic quantum mechanics and symmetric stable stochastic processes. Many of the results obtained here are concerned with finding bounds for some functions of the spectrum of these operators. The subject, which is well developed for the Laplacian, is examined from the spectral theory perspective through some of the tools used to prove analogous results for the Laplacian. This work highlights some important results, sparking interest in constructing a similar theory for Klein-Gordon operators. For instance, the Weyl asymptotics and semiclassical bounds for the Klein-Gordon operator are developed. As a result, a Berezin-Li-Yau type inequality is derived and an improvement of the bound is proved in a separate chapter. Other results involving some universal bounds for the Klein-Gordon Hamiltonian with an external interaction are also obtained.
33

Geometric discretization schemes and differential complexes for elasticity

Angoshtari, Arzhang 20 September 2013 (has links)
In this research, we study two different geometric approaches, namely, the discrete exterior calculus and differential complexes, for developing numerical schemes for linear and nonlinear elasticity. Using some ideas from discrete exterior calculus (DEC), we present a geometric discretization scheme for incompressible linearized elasticity. After characterizing the configuration manifold of volume- preserving discrete deformations, we use Hamilton’s principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers. The main difference between our approach and the mixed finite element formulations is that we simultaneously use three different discrete spaces for the displacement field. We test the efficiency and robustness of this geometric scheme using some numerical examples. In particular, we do not see any volume locking and/or checkerboarding of pressure in our numerical examples. This suggests that our choice of discrete solution spaces is compatible. On the other hand, it has been observed that the linear elastostatics complex can be used to find very efficient numerical schemes. We use some geometric techniques to obtain differential complexes for nonlinear elastostatics. In particular, by introducing stress functions for the Cauchy and the second Piola-Kirchhoff stress tensors, we show that 2D and 3D nonlinear elastostatics admit separate kinematic and kinetic complexes. We show that stress functions corresponding to the first Piola-Kirchhoff stress tensor allow us to write a complex for 3D nonlinear elastostatics that similar to the complex of 3D linear elastostatics contains both the kinematics an kinetics of motion. We study linear and nonlinear compatibility equations for curved ambient spaces and motions of surfaces in R3. We also study the relationship between the linear elastostatics complex and the de Rham complex. The geometric approach presented in this research is crucial for understanding connections between linear and nonlinear elastostatics and the Hodge Laplacian, which can enable one to convert numerical schemes of the Hodge Laplacian to those for linear and possibly nonlinear elastostatics.
34

A new Laplace operator in Finsler geometry and periodic orbits of Anosov flows

Barthelmé, Thomas 24 January 2012 (has links) (PDF)
In the first part of this dissertation, we give a new definition of a Laplace operator for Finsler metric as an average, with regard to an angle measure, of the second directional derivatives. This operator is elliptic, symmetric with respect to the Holmes-Thompson volume, and coincides with the usual Laplace--Beltrami operator when the Finsler metric is Riemannian. We compute explicit spectral data for some Katok-Ziller metrics. When the Finsler metric is negatively curved, we show, thanks to a result of Ancona that the Martin boundary is Hölder-homeomorphic to the visual boundary. This allow us to deduce the existence of harmonic measures and some ergodic preoperties. In the second part of this dissertation, we study Anosov flows in 3-manifolds, with leaf-spaces homeomorphic to .... When the manifold is hyperbolic, Thurston showed that the (un)stable foliations induces an "orthogonal" flow. We use this second flow to study isotopy class of periodic orbits of the Anosov flow and existence of embedded cylinders.
35

Das Spektrum von Dirac-Operatoren /

Bär, Christian. January 1991 (has links)
Thesis (Doctoral)--Universität Bonn, 1990. / Includes bibliographical references.
36

Multiple positive solutions for classes of elliptic systems with combined nonlinear effects

Ali, Jaffar, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Mathematics and Statistics. / Title from title screen. Includes bibliographical references.
37

Infinite semipositone systems

Ye, Jinglong, January 2009 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Mathematics and Statistics. / Title from title screen. Includes bibliographical references.
38

O primeiro autovalor do laplaciano em variedades riemannianas

Klaser, Patrícia Kruse January 2012 (has links)
Propriedades do primeiro autovalor e da primeira autofunção do operador laplaciano em variedades riemannianas são estudadas. Para variedades em que se pode estimar o laplaciano de funções distância, estimativas explícitas para o primeiro autovalor do laplaciano em domínios duplamente conexos são obtidas. Então observamos que hipóteses sobre as curvaturas da variedade e do bordo do domínio permitem estimar o laplaciano da distância. Além disso, autofunções em domínios não compactos do espaço hiperbólico EI" são estudadas. Mostramos que donn'nios contidos em horobolas não admitem autofunções limitadas associadas ao autovalor A(HIn), mas se o fecho assintótico do domínio contém um aberto de (9ooIHIn, então ele admite uma autofunção positiva que se anula em dfí U dooQ. A existência e o perfil de autofunções de autovalor A(IHI") em EI", em IHIn\Sr(o), em horobolas, em hiperbolas e no complementar de horobolas são analisados. Para alguns desses domínios apresentamos uma expressão explícita para a autofunção que depende apenas da distância à fronteira. Finalmente, técnicas de simetrização de Schwarz são adaptadas para variedades permitindo-nos obter estimativas para normas de autofunções. Primeiro um argumento de comparação demonstra que variedades mais simétricas maximizam certas normas. Obtenios também uma estimativa diretamente da função isoperimétrica da variedade. / Some properties of the first eigenvalue A and the first eigenfunction of the Laplace operator in a Riemannian manifold are studied. Assuming a bound for the Laplacian of the distance function, exphcit estimates for the first eigenvalue of a doubly counected domain are presented. Then some assumptions on the curvatures of the manifold and its boundary are made in order to have an estimate for the Laplacian of the distance function. Furthermore eigenfunctions of non compact domains in the hyperbohc space EIn are studied. We prove that a domain contained in a horoball does not admit a bounded eigenfunction of eigenvalue A(lHIn), but if the closure of the domain contains an open set of then it admits a positive eigenfunction that vanishes on dQ U daoíl. The existence and the profile of eigenfunctions of eigenvalue A(E[n ) in H71, in H [ r i \ 5 r ( o ) , in horoballs, hiperballs and in the complement of a horoball are analysed. For some of these domains we present an explicit expression for the eigenfunction that depends only on the distance to the boundary. Finally Schwarz symmetrization techniques are adapted for manifolds implying in estimates for the norm of the eigenfunctions. First a comparison argument proves that highly symmetric manifolds maximize some norm and then an estimated obtained directly from the isoperimetric function of the manifold is presented.
39

O primeiro autovalor do laplaciano em variedades riemannianas

Klaser, Patrícia Kruse January 2012 (has links)
Propriedades do primeiro autovalor e da primeira autofunção do operador laplaciano em variedades riemannianas são estudadas. Para variedades em que se pode estimar o laplaciano de funções distância, estimativas explícitas para o primeiro autovalor do laplaciano em domínios duplamente conexos são obtidas. Então observamos que hipóteses sobre as curvaturas da variedade e do bordo do domínio permitem estimar o laplaciano da distância. Além disso, autofunções em domínios não compactos do espaço hiperbólico EI" são estudadas. Mostramos que donn'nios contidos em horobolas não admitem autofunções limitadas associadas ao autovalor A(HIn), mas se o fecho assintótico do domínio contém um aberto de (9ooIHIn, então ele admite uma autofunção positiva que se anula em dfí U dooQ. A existência e o perfil de autofunções de autovalor A(IHI") em EI", em IHIn\Sr(o), em horobolas, em hiperbolas e no complementar de horobolas são analisados. Para alguns desses domínios apresentamos uma expressão explícita para a autofunção que depende apenas da distância à fronteira. Finalmente, técnicas de simetrização de Schwarz são adaptadas para variedades permitindo-nos obter estimativas para normas de autofunções. Primeiro um argumento de comparação demonstra que variedades mais simétricas maximizam certas normas. Obtenios também uma estimativa diretamente da função isoperimétrica da variedade. / Some properties of the first eigenvalue A and the first eigenfunction of the Laplace operator in a Riemannian manifold are studied. Assuming a bound for the Laplacian of the distance function, exphcit estimates for the first eigenvalue of a doubly counected domain are presented. Then some assumptions on the curvatures of the manifold and its boundary are made in order to have an estimate for the Laplacian of the distance function. Furthermore eigenfunctions of non compact domains in the hyperbohc space EIn are studied. We prove that a domain contained in a horoball does not admit a bounded eigenfunction of eigenvalue A(lHIn), but if the closure of the domain contains an open set of then it admits a positive eigenfunction that vanishes on dQ U daoíl. The existence and the profile of eigenfunctions of eigenvalue A(E[n ) in H71, in H [ r i \ 5 r ( o ) , in horoballs, hiperballs and in the complement of a horoball are analysed. For some of these domains we present an explicit expression for the eigenfunction that depends only on the distance to the boundary. Finally Schwarz symmetrization techniques are adapted for manifolds implying in estimates for the norm of the eigenfunctions. First a comparison argument proves that highly symmetric manifolds maximize some norm and then an estimated obtained directly from the isoperimetric function of the manifold is presented.
40

Primeiro autovalor nÃo nulo de uma hipersuperfÃcie mÃnima na esfera unitÃria / First nonzero eigenvalue of a minimal hypersuperface in the unit sphere

Henrique Blanco da Silva 23 August 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O objetivo deste trabalho à estudarmos o primeiro autovalor nÃo nulo do operador Laplaciano de hipersuperfÃcies compactas com curvatura mÃdia constante imersas na esfera unitÃria contida no espaÃo Euclidiano. Vamos mostrar que para o caso mÃnimo, teremos uma de trÃs possÃveis estimativas para este primeiro autovalor e, como consequÃncia de um possÃvel autovalor, esta hipersuperfÃcie serà isomÃtrica à uma esfera. / The aim of this work is we study the first nonzero eigenvalue of the Laplacian operator compact hypersurfaces with constant mean curvature immersed in the unit sphere contained in Euclidean space. We will show that for the minimal case, we will have one of three possible estimates for the first eigenvalue and, as a consequence of a possible eigenvalue, this hypersurface will be isometric to sphere.

Page generated in 0.0624 seconds