Spelling suggestions: "subject:"laserskanning.""
1 |
Noggrannhetskontroll av laserdata för ny nationell höjdmodellOwemyr, Pär, Lundgren, Jonas January 2010 (has links)
Ny nationell höjdmodell är ett projekt som utförts av Lantmäteriet på begäran av regeringen sedan år 2009 och beräknas vara färdigt år 2016. Datainsamling sker med hjälp av flygburen laserskanning. Syftet med studien är att kontrollera noggrannheten av laserdata som ska användas för framställning av ny nationell höjdmodell i Sverige. Noggrannhetskontrollen utfördes på området Årsunda – Ockelbo (syd – nord) och Storvik – Forsbacka (väst – öst). Kvalitetskontroll av laserdata/Digital höjdmodell (DHM) har varit en viktig fråga i flygburen laserskanning genom åren. Vid noggrannhetskontroll val-des att utgå ifrån ett mätningsutförande med profiler enligt Teknisk specifikation SIS-TS 21145:2007 ”Byggmätning – Statistisk provning av digital terrängmodell”. Markslagstyper som undersökts är as-faltyta, barrskog, gräsyta, kalhygge, lövskog, mosse och ängsmark. Mjukvaran TerraScan användes för noggrannhetskontroll av laserdata. Lantmäteriet har som krav att RMS ej får överstiga 0,2 m på öppna, plana och väldefinierade ytor. Detta krav uppfylls för alla markslagtyper. Noggrannheten i laserdata påverkas bl.a. kuperingsgrad och vegetation. Ytterligare studier är önskvärda för jämförelse mellan olika grader av kupering i samma markslagstyp. / The new national elevation model is a project undertaken by the National Land Survey at the request of the government since 2009 and is expected to be completed in 2016. Data collection is performed by means of airborne laser scanning. The purpose of this study is to verify the accuracy of laser data to be used for the production of new national height model in Sweden. Accuracy assessment was con-ducted in the area Årsunda – Ockelbo (south-north) and Storvik – Forsbacka (west-east). Quality as-surance of laser data/Digital elevation model (DEM) has been an important issue in airborne laser scanning through the years. The accuracy assessment was conducted using measurement of profiles according to Technical Specification SIS-TS 21145:2007 “Engineering survey for construction works – Statistical test of digital terrain model”. The terrain types investigated is asphalt, coniferous forest, grass surface, clear cut forest, deciduous forest, bog and grassland. TerraScan software was used for accuracy assessment of laser data and measurements of reference points. National Land Survey has announced that RMS should not exceed 0.2 m in open, flat and well-defined surfaces. This demand is met for all land types. The accuracy of laser data is influenced by the variation of the elevations and the density of the vegetation. Further studies are needed for comparison of different degrees of terrain roughness in similar terrain types.
|
2 |
Vektorizace polohopisu s využitím mračen bodů pořízených skenováním / Vectorization of planimetry using point clouds captured by scanningLokšová, Romana January 2018 (has links)
Diploma thesis deals with vectorisation above point cloud, created by diferent techniques. Vektoriztion purpose as a base for comparison to actual condition in terrain gain by terrain measurement and DKM.
|
3 |
Jämförelse av karteringsmetoder inför bergklassificering i tunnlarForsberg, Viktor, Granström, Filip January 2016 (has links)
Säkerhet är ständigt en primär fråga vid byggnation, detta innefattar även drivning av tunnlar. För att förhindra ras eller utglidning av block undersöks och klassificeras därför berget. Tunneln som undersöks i denna studie kostar ungefär 7000 kr/timme att driva. Därför finns det mycket pengar att spara på effektivisering av arbetsmoment, däribland kartering. I denna uppsats jämförs därför tre olika karteringsmetoder såsom konventionell kartering, fotogrammetri och laserskanning. De olika metodernas Q- och RMR-index jämförs sedan med hänsyn till de olika ingående parametrarna i klassificeringssystemen. Syftet med studien är att studera om de nya karteringsmetoderna har några ekonomiska och/eller säkerhetsmässiga fördelar, samt även eventuella fördelar vad gäller lagring av bergets kvalitet och egenskaper i digitalt format. Därutöver även att studera om de nya teknikerna kan ersätta den konventionella karteringsmetoden helt eller till viss del. Laserskanning och fotogrammetri kan inte helt ersätta dagens konventionella kartering. Detta på grund av att alla parametrar för klassificeringssystemen inte kan observeras/tolkas i de framställda digitala modellerna, utan måste göras på plats. Dock kan de digitala metoderna kombineras med den konventionella och därmed är en fullständig kartering och klassificering möjlig. Däremot finns andra fördelar med de digitala metoderna såsom digitala lagringsmöjligheter, detaljrika lättolkade modeller och att de är tidseffektiva över längre sträckor. / Safety is always a primary concern during construction, even during tunnel construction. To prevent rock fall or sliding of blocks the rock has to be examined and classified. The tunnel examined in this report costs about 7000 SEK/hour to construct. Therefore, a lot of money can be saved by streamlining the work process, including mapping of geological structures. In this paper three mapping methods are compared, such as traditional geological mapping, photogrammetry and laser scanning. The Q and RMR index from the three different methods are then compared with respect to the various parameters included in the classification systems. The purpose of this study is to find out whether the new mapping methods have any financial and/or safety benefits, as well as any potential benefits in terms of storage in digital format of information about the rock quality and features, or not. The purpose is also to examine if the new technologies could replace the traditional mapping method fully or partially. Laser scanning and photogrammetry cannot completely replace today’s conventional mapping. This is because some of the parameters are not possible to be observed and interpreted in the produced digital models, but must be done in situ. However, there are other benefits of the digital methods such as digital storage capabilities, detailed, easily interpretable models and that it takes less time to map large areas or long distances.
|
4 |
Modellering av befintliga byggnader / Modeling of existing buildingsAndersson, Victor, Visekruna, Sanjin, Jasarevic, Haris January 2013 (has links)
Rapporten avhandlar modelleringen av en befintlig industribyggnad och dess tillvägagångssätt. I rapporten har även utredningar och studier granskats kring neutrala filformat, laserscanning och byggprocessen i allmänhet då dessa omnämnda ämnen går hand i hand och utgör fundamenten i modellerings-projekt. Projektet som författarna modellerade var det befintliga renseriet på Södra Cell i Mönsterås. Intervjuer som kontinuerligt utförts med berörda personer framgår under genomförande delen.
|
5 |
Road Condition Mapping by Integration of Laser Scanning, RGB Imaging and SpectrometryMiraliakbari, Alvand 14 November 2017 (has links) (PDF)
Roads are important infrastructure and are primary means of transportation. Control and maintenance of roads are substantial as the pavement surface deforms and deteriorates due to heavy load and influences of weather. Acquiring detailed information about the pavement condition is a prerequisite for proper planning of road pavement maintenance and rehabilitation. Many companies detect and localize the road pavement distresses manually, either by on-site inspection or by digitizing laser data and imagery captured by mobile mapping. The automation of road condition mapping using laser data and colour images is a challenge. Beyond that, the mapping of material properties of the road pavement surface with spectrometers has not yet been investigated.
This study aims at automatic mapping of road surface condition including distress and material properties by integrating laser scanning, RGB imaging and spectrometry. All recorded data are geo-referenced by means of GNSS/ INS. Methods are developed for pavement distress detection that cope with a variety of different weather and asphalt conditions. Further objective is to analyse and map the material properties of the pavement surface using spectrometry data.
No standard test data sets are available for benchmarking developments on road condition mapping. Therefore, all data have been recorded with a mobile mapping van which is set up for the purpose of this research. The concept for detecting and localizing the four main pavement distresses, i.e. ruts, potholes, cracks and patches is the following: ruts and potholes are detected using laser scanning data, cracks and patches using RGB images. For each of these pavement distresses, two or more methods are developed, implemented, compared to each other and evaluated to identify the most successful method. With respect to the material characteristics, spectrometer data of road sections are classified to indicate pavement quality. As a spectrometer registers almost a reflectivity curve in VIS, NIR and SWIR wavelength, indication of aging can be derived. After detection and localization of the pavement distresses and pavement quality classes, the road condition map is generated by overlaying all distresses and quality classes.
As a preparatory step for rut and pothole detection, the road surface is extracted from mobile laser scanning data based on a height jump criterion. For the investigation on rut detection, all scanlines are processed. With an approach based on iterative 1D polynomial fitting, ruts are successfully detected. For streets with the width of 6 m to 10 m, a 6th order polynomial is found to be most suitable. By 1D cross-correlation, the centre of the rut is localized. An alternative method using local curvature shows a high sensitivity to the shape and width of a rut and is less successful. For pothole detection, the approach based on polynomial fitting generalized to two dimensions. As an alternative, a procedure using geodesic morphological reconstruction is investigated. Bivariate polynomial fitting encounters problems with overshoot at the boundary of the regions. The detection is very successful using geodesic morphology. For the detection of pavement cracks, three methods using rotation invariant kernels are investigated. Line Filter, High-pass Filter and Modified Local Binary Pattern kernels are implemented. A conceptual aspect of the procedure is to achieve a high degree of completeness. The most successful variant is the Line Filter for which the highest degree of completeness of 81.2 % is achieved. Two texture measures, the gradient magnitude and the local standard deviation are employed to detect pavement patches. As patches may differ with respect to homogeneity and may not always have a dark border with the intact pavement surface, the method using the local standard deviation is more suitable for detecting the patches. Linear discriminant analysis is utilized for asphalt pavement quality analysis and classification. Road pavement sections of ca. 4 m length are classified into two classes, namely: “Good” and “Bad” with the overall accuracy of 77.6 %.
The experimental investigations show that the developed methods for automatic distress detection are very successful. By 1D polynomial fitting on laser scanlines, ruts are detected. In addition to ruts also pavement depressions like shoving can be revealed. The extraction of potholes is less demanding. As potholes appear relatively rare in the road networks of a city, the road segments which are affected by potholes are selected interactively. While crack detection by Line Filter works very well, the patch detection is more challenging as patches sometimes look very similar to the intact surface. The spectral classification of pavement sections contributes to road condition mapping as it gives hints on aging of the road pavement. / Straßen bilden die primären Transportwege für Personen und Güter und sind damit ein wichtiger Bestandteil der Infrastruktur. Der Aufwand für Instandhaltung und Wartung der Straßen ist erheblich, da sich die Fahrbahnoberfläche verformt und durch starke Belastung und Wettereinflüsse verschlechtert. Die Erfassung detaillierter Informationen über den Fahrbahnzustand ist Voraussetzung für eine sachgemäße Planung der Fahrbahnsanierung und -rehabilitation. Viele Unternehmen detektieren und lokalisieren die Fahrbahnschäden manuell entweder durch Vor-Ort-Inspektion oder durch Digitalisierung von Laserdaten und Bildern aus mobiler Datenerfassung. Eine Automatisierung der Straßenkartierung mit Laserdaten und Farbbildern steht noch in den Anfängen. Zudem werden bisher noch nicht die Alterungszustände der Asphaltdecke mit Hilfe der Spektrometrie bewertet.
Diese Studie zielt auf den automatischen Prozess der Straßenzustandskartierung einschließlich der Straßenschäden und der Materialeigenschaften durch Integration von Laserscanning, RGB-Bilderfassung und Spektrometrie ab. Alle aufgezeichneten Daten werden mit GNSS / INS georeferenziert. Es werden Methoden für die Erkennung von Straßenschäden entwickelt, die sich an unterschiedliche Datenquellen bei unterschiedlichem Wetter- und Asphaltzustand anpassen können. Ein weiteres Ziel ist es, die Materialeigenschaften der Fahrbahnoberfläche mittels Spektrometrie-Daten zu analysieren und abzubilden.
Derzeit gibt es keine standardisierten Testdatensätze für die Evaluierung von Verfahren zur Straßenzustandsbeschreibung. Deswegen wurden alle Daten, die in dieser Studie Verwendung finden, mit einem eigens für diesen Forschungszweck konfigurierten Messfahrzeug aufgezeichnet. Das Konzept für die Detektion und Lokalisierung der wichtigsten vier Arten von Straßenschäden, nämlich Spurrillen, Schlaglöcher, Risse und Flickstellen ist das folgende: Spurrillen und Schlaglöcher werden aus Laserdaten extrahiert, Risse und Flickstellen aus RGB- Bildern. Für jede dieser Straßenschäden werden mindestens zwei Methoden entwickelt, implementiert, miteinander verglichen und evaluiert um festzustellen, welche Methode die erfolgreichste ist. Im Hinblick auf die Materialeigenschaften werden Spektrometriedaten der Straßenabschnitte klassifiziert, um die Qualität des Straßenbelages zu bewerten. Da ein Spektrometer nahezu eine kontinuierliche Reflektivitätskurve im VIS-, NIR- und SWIR-Wellenlängenbereich aufzeichnet, können Merkmale der Asphaltalterung abgeleitet werden. Nach der Detektion und Lokalisierung der Straßenschäden und der Qualitätsklasse des Straßenbelages wird der übergreifende Straßenzustand mit Hilfe von Durchschlagsregeln als Kombination aller Zustandswerte und Qualitätsklassen ermittelt.
In einem vorbereitenden Schritt für die Spurrillen- und Schlaglocherkennung wird die Straßenoberfläche aus mobilen Laserscanning-Daten basierend auf einem Höhensprung-Kriterium extrahiert. Für die Untersuchung zur Spurrillen-Erkennung werden alle Scanlinien verarbeitet. Mit einem Ansatz, der auf iterativer 1D-Polynomanpassung basiert, werden Spurrillen erfolgreich erkannt. Für eine Straßenbreite von 8-10m erweist sich ein Polynom sechsten Grades als am besten geeignet. Durch 1D-Kreuzkorrelation wird die Mitte der Spurrille erkannt. Eine alternative Methode, die die lokale Krümmung des Querprofils benutzt, erweist sich als empfindlich gegenüber Form und Breite einer Spurrille und ist weniger erfolgreich. Zur Schlaglocherkennung wird der Ansatz, der auf Polynomanpassung basiert, auf zwei Dimensionen verallgemeinert. Als Alternative wird eine Methode untersucht, die auf der Geodätischen Morphologischen Rekonstruktion beruht. Bivariate Polynomanpassung führt zu Überschwingen an den Rändern der Regionen. Die Detektion mit Hilfe der Geodätischen Morphologischen Rekonstruktion ist dagegen sehr erfolgreich. Zur Risserkennung werden drei Methoden untersucht, die rotationsinvariante Kerne verwenden. Linienfilter, Hochpassfilter und Lokale Binäre Muster werden implementiert. Ein Ziel des Konzeptes zur Risserkennung ist es, eine hohe Vollständigkeit zu erreichen. Die erfolgreichste Variante ist das Linienfilter, für das mit 81,2 % der höchste Grad an Vollständigkeit erzielt werden konnte. Zwei Texturmaße, nämlich der Betrag des Grauwert-Gradienten und die lokale Standardabweichung werden verwendet, um Flickstellen zu entdecken. Da Flickstellen hinsichtlich der Homogenität variieren können und nicht immer eine dunkle Grenze mit dem intakten Straßenbelag aufweisen, ist diejenige Methode, welche die lokale Standardabweichung benutzt, besser zur Erkennung von Flickstellen geeignet. Lineare Diskriminanzanalyse wird zur Analyse der Asphaltqualität und zur Klassifikation benutzt. Straßenabschnitte von ca. 4m Länge werden zwei Klassen („Gut“ und „Schlecht“) mit einer gesamten Accuracy von 77,6 % zugeordnet.
Die experimentellen Untersuchungen zeigen, dass die entwickelten Methoden für die automatische Entdeckung von Straßenschäden sehr erfolgreich sind. Durch 1D Polynomanpassung an Laser-Scanlinien werden Spurrillen entdeckt. Zusätzlich zu Spurrillen werden auch Unebenheiten des Straßenbelages wie Aufschiebungen detektiert. Die Extraktion von Schlaglöchern ist weniger anspruchsvoll. Da Schlaglöcher relativ selten in den Straßennetzen von Städten auftreten, werden die Straßenabschnitte mit Schlaglöchern interaktiv ausgewählt. Während die Rissdetektion mit Linienfiltern sehr gut funktioniert, ist die Erkennung von Flickstellen eine größere Herausforderung, da Flickstellen manchmal der intakten Straßenoberfläche sehr ähnlich sehen. Die spektrale Klassifizierung der Straßenabschnitte trägt zur Straßenzustandsbewertung bei, indem sie Hinweise auf den Alterungszustand des Straßenbelages liefert.
|
6 |
VR-teknik i en ombyggnadsprocess / VR-technology in a rebuilding processFriberg, Andreas, Johansson, Rasmus January 2017 (has links)
Detta examensarbete är utfört för att generellt beskriva VR och ge underlag för Skymaps tillämpning om att i ett ombyggnadsskede visa ATA Timbers sågverk i VR. Modellen skall vara tilltalande för kunden i VR. Under modelleringen har hänsyn tagits till Skymaps önskemål om vilka programvaror som skall användas. Utformningen av sågverket är redan fastställt och därför kommer underlag endast användas för att ritas av. Resultatet uppnås genom att granska, utreda och tillämpa tekniken. Resultatet av examensarbetet blev som förväntat, en 3D-modell av sågverket i Sandsjöfors finns nu att använda sig av vid ATA Timbers om- och tillbyggnadsprocess.
|
7 |
Automatic Reconstruction of Urban Objects from Mobile Laser Scanner DataNalani, Hetti Arachchige 28 January 2015 (has links) (PDF)
Aktuelle 3D-Stadtmodelle werden immer wichtiger in verschiedenen städtischen Anwendungsbereichen. Im Moment dienen sie als Grundlage bei der Stadtplanung, virtuellem Tourismus und Navigationssystemen.
Mittlerweile ist der Bedarf an 3D-Gebäudemodellen dramatisch gestiegen. Der Grund dafür sind hauptsächlich Navigationssysteme und Onlinedienste wie Google Earth. Die Mehrheit der Untersuchungen zur Rekonstruktion von Gebäudemodellen von Luftaufnahmen konzentriert sich ausschließlich auf Dachmodellierung. Jedoch treiben Anwendungen wie Virtuelle Realität und Navigationssysteme die Nachfrage nach detaillieren Gebäudemodellen, die nicht nur die geometrischen Aspekte sondern auch semantische Informationen beinhalten, stark an. Urbanisierung und Industrialisierung beeinflussen das Wachstum von urbaner Vegetation drastisch, welche als ein wesentlicher Teil des Lebensraums angesehen wird. Aus diesem Grund werden Aufgaben wie der Ökosystemüberwachung, der Verbesserung der Planung und des Managements von urbanen Regionen immer mehr Aufmerksamkeit geschenkt. Gleichermaßen hat die Erkennung und Modellierung von Bäumen im Stadtgebiet sowie die kontinuierliche Überprüfung ihrer Inventurparameter an Bedeutung gewonnen.
Die steigende Nachfrage nach 3D-Gebäudemodellen, welche durch Fassadeninformation ergänzt wurden, und Informationen über einzelne Bäume im städtischen Raum erfordern effiziente Extraktions- und Rekonstruktionstechniken, die hochgradig automatisiert sind. In diesem Zusammenhang ist das Wissen über die geometrische Form jedes Objektteils ein wichtiger Aspekt. Heutzutage, wird das Mobile Laser Scanning (MLS) vermehrt eingesetzt um Objekte im städtischen Umfeld zu erfassen und es entwickelt sich zur Hauptquelle von Daten für die Modellierung von urbanen Objekten. Eine Vielzahl von Objekten wurde schon mit Daten von MLS rekonstruiert. Außerdem wurden bereits viele Methoden für die Verarbeitung von MLS-Daten mit dem Ziel urbane Objekte zu erkennen und zu rekonstruieren vorgeschlagen. Die 3D-Punkwolke einer städtischen Szene stellt eine große Menge von Messungen dar, die viele Objekte von verschiedener Größe umfasst, komplexe und unvollständige Strukturen sowie Löcher (Rauschen und Datenlücken) enthält und eine inhomogene Punktverteilung aufweist. Aus diesem Grund ist die Verarbeitung von MLS-Punktwolken im Hinblick auf die Extrahierung und Modellierung von wesentlichen und charakteristischen Fassadenstrukturen sowie Bäumen von großer Bedeutung.
In der Arbeit werden zwei neue Methoden für die Rekonstruktion von Gebäudefassaden und die Extraktion von Bäumen aus MLS-Punktwolken vorgestellt, sowie ihre Anwendbarkeit in der städtischen Umgebung analysiert.
Die erste Methode zielt auf die Rekonstruktion von Gebäudefassaden mit expliziter semantischer Information, wie beispielsweise Fenster, Türen, und Balkone. Die Rekonstruktion läuft vollautomatisch ab. Zu diesem Zweck werden einige Algorithmen vorgestellt, die auf dem Vorwissen über die geometrische Form und das Arrangement von Fassadenmerkmalen beruhen. Die initiale Klassifikation, mit welcher die Punkte in Objektpunkte und Bodenpunkte unterschieden werden, wird über eine lokale Höhenhistogrammanalyse zusammen mit einer planaren Region-Growing-Methode erzielt. Die Punkte, die als zugehörig zu Objekten klassifiziert werden, werden anschließend in Ebenen segmentiert, welche als Basiselemente der Merkmalserkennung angesehen werden können. Information über die Gebäudestruktur kann in Form von Regeln und Bedingungen erfasst werden, welche die wesentlichen Steuerelemente bei der Erkennung der Fassadenmerkmale und der Rekonstruktion des geometrischen Modells darstellen. Um Merkmale wie Fenster oder Türen zu erkennen, die sich an der Gebäudewand befinden, wurde eine löcherbasierte Methode implementiert. Einige Löcher, die durch Verdeckungen entstanden sind, können anschließend durch einen neuen regelbasierten Algorithmus eliminiert werden. Außenlinien der Merkmalsränder werden durch ein Polygon verbunden, welches das geometrische Modell repräsentiert, indem eine Methode angewendet wird, die auf geometrischen Primitiven basiert. Dabei werden die topologischen Relationen unter Beachtung des Vorwissens über die primitiven Formen analysiert. Mögliche Außenlinien können von den Kantenpunkten bestimmt werden, welche mit einer winkelbasierten Methode detektiert werden können. Wiederkehrende Muster und Ähnlichkeiten werden ausgenutzt um geometrische und topologische Ungenauigkeiten des rekonstruierten Modells zu korrigieren.
Neben der Entwicklung des Schemas zur Rekonstruktion des 3D-Fassadenmodells, sind die Segmentierung einzelner Bäume und die Ableitung von Attributen der städtischen Bäume im Fokus der Untersuchung. Die zweite Methode zielt auf die Extraktion von individuellen Bäumen aus den Restpunktwolken. Vorwissen über Bäume, welches speziell auf urbane Regionen zugeschnitten ist, wird im Extraktionsprozess verwendet. Der formbasierte Ansatz zur Extraktion von Einzelbäumen besteht aus einer Reihe von Schritten. In jedem Schritt werden Objekte in Abhängigkeit ihrer geometrischen Merkmale gefunden. Stämme werden unter Ausnutzung der Hauptrichtung der Punktverteilung identifiziert. Dafür werden Punktsegmente gesucht, die einen Teil des Baumstamms repräsentieren. Das Ergebnis des Algorithmus sind segmentierte Bäume, welche genutzt werden können um genaue Informationen über die Größe und Position jedes einzelnen Baumes abzuleiten. Einige Beispiele der Ergebnisse werden in der Arbeit angeführt.
Die Zuverlässigkeit der Algorithmen und der Methoden im Allgemeinen wurden unter Verwendung von drei Datensätzen, die mit verschiedenen Laserscannersystemen aufgenommen wurden, verifiziert. Die Untersuchung zeigt auch das Potential sowie die Einschränkungen der entwickelten Methoden wenn sie auf verschiedenen Datensätzen angewendet werden. Die Ergebnisse beider Methoden wurden quantitativ bewertet unter Verwendung einer Menge von Maßen, die die Qualität der Fassadenrekonstruktion und Baumextraktion betreffen wie Vollständigkeit und Genauigkeit. Die Genauigkeit der Fassadenrekonstruktion, der Baumstammdetektion, der Erfassung von Baumkronen, sowie ihre Einschränkungen werden diskutiert. Die Ergebnisse zeigen, dass MLS-Punktwolken geeignet sind um städtische Objekte detailreich zu dokumentieren und dass mit automatischen Rekonstruktionsmethoden genaue Messungen der wichtigsten Attribute der Objekte, wie Fensterhöhe und -breite, Flächen, Stammdurchmesser, Baumhöhe und Kronenfläche, erzielt werden können. Der gesamte Ansatz ist geeignet für die Rekonstruktion von Gebäudefassaden und für die korrekte Extraktion von Bäumen sowie ihre Unterscheidung zu anderen urbanen Objekten wie zum Beispiel Straßenschilder oder Leitpfosten. Aus diesem Grund sind die beiden Methoden angemessen um Daten von heterogener Qualität zu verarbeiten. Des Weiteren bieten sie flexible Frameworks für das viele Erweiterungen vorstellbar sind. / Up-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds.
The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models.
Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree.
The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned.
|
8 |
Untersuchungen zur Qualität und Genauigkeit von 3D-Punktwolken für die 3D-Objektmodellierung auf der Grundlage von terrestrischem Laserscanning und bildbasierten Verfahren / Investigations into the Quality and Accuracy of 3D Point Clouds for 3D Object Modelling on the Basis of Terrestrial Laser Scanning and Image-based TechnologyKersten, Thomas 09 January 2018 (has links) (PDF)
3D-Punktwolken haben die Objektvermessung in den letzten 25 Jahren signifikant verändert. Da Einzelpunktmessungen durch flächenhafte Messungen in Form von Punktwolken bei vielen Anwendungen ersetzt wurden, spricht man auch von einem Paradigmenwechsel in der Vermessung. Ermöglicht wurde diese Änderung in der Messmethodik durch die Innovationen im Instrumentenbau und die rasanten Entwicklungen der Computertechnologie. Luftgestützte und terrestrische Laserscanner sowie handgeführte 3D-Scanner liefern heute direkt dichte Punktwolken, während dichte 3D-Punkt-wolken aus Fotos bildbasierter Aufnahmesysteme indirekt abgeleitet werden, die zur detaillierten 3D-Objektrekonstruktion zunehmend eingesetzt werden.
In dieser Arbeit werden Untersuchungen vorgestellt, mit denen das geometrische Genauigkeitsverhalten verschiedener scannender Messsysteme evaluiert und geprüft wurde. Während bei den untersuchten terrestrischen Laserscannern in den Untersuchungen die Genauigkeitsangaben (1 Sigma) der technischen Spezifikationen der Systemhersteller von 3-5 mm für den 3D-Punkt und die Distanzmessung eingehalten wurden, zeigten sich dagegen bei vielen untersuchten 3D-Handscannern signifikante Abweichungen gegenüber den technischen Spezifikationen. Diese festgestellten Abweichungen deuten auf eine gewisse geometrische Instabilität des jeweiligen Messsystems hin, die entweder durch die Bauweise und/oder durch eine ungenaue Systemkalibrierung (besonders hinsichtlich der Maßstäblichkeit) verursacht werden. Daher ist davon auszugehen, dass diese handgeführten 3D-Scanner offensichtlich erst am Anfang ihrer Entwicklungsphase stehen und dass noch genügend Optimierungspotential vorhanden ist.
Als flexible und effiziente Alternativen zu den scannenden Messsystemen haben sich seit ca. 10 Jahren die bildbasierten Aufnahmesysteme zunehmend im Markt etabliert. Die in dieser Arbeit vorgestellten Untersuchungen des bildbasierten Aufnahme- und Auswertungsverfahren haben gezeigt, dass diese (mit Farbattributen versehene) 3D-Punktwolken, je nach Bildmaßstab und Oberflächenmaterial des Objektes, durchaus den Genauigkeiten der Laserscanner entsprechen. Gegenüber den Ergebnissen vieler 3D-Handscanner weisen die durch bildbasierte Aufnahmeverfahren generierten Punktwolken qualitativ bessere Resultate auf. Allerdings zeigte der Creaform HandySCAN 700, der auf einem photogrammetrischen Aufnahmeprinzip beruht, als einzige Ausnahme bei der handgeführten 3D-Scannern sehr gute Ergebnisse, die mit Durchschnittswerten besser als 30 Mikrometern sogar in den Bereichen der Referenzsysteme (hier Streifenprojektionssysteme) lagen.
Die entwickelten Prüfverfahren und die entsprechenden durchgeführten Untersuchungen haben sich als praxistauglich erwiesen, da man auch unter zur Hilfenahme der VDI/VDE Richtlinie 2634 ver-gleichbare Ergebnisse erzielt, die dem praxisorientierten Anwender Aussagen über die Leistungsfä-higkeit des Messsystems erlauben. Bei den im statischen Modus erfassten Scans kommen noch Fehlereinflüsse durch die Registrierung der Scans hinzu, während bei kinematisch erfassten Scans die Genauigkeiten der verschiedenen (absoluten) Positionierungssensoren auf dem Fehlerhaushalt der Punktwolke addiert werden. Eine sorgfältige Systemkalibrierung der verschiedenen im kinematischen Modus arbeitenden Positionierungs- und Aufnahmesensoren des mobilen Multi-Sensor-Systems ermöglicht eine 3D-Punktgenauigkeit von ca. 3-5 cm, die unter guten Bedingungen mit höherwertigen Sensoren ggf. noch verbessert werden kann. Mit statischen Scans kann eine höhere Genauigkeit von besser als 1 cm für den 3D-Punkt erreicht werden, jedoch sind bei größeren aufzunehmenden Flächen mobile Aufnahmesysteme wesentlich effizienter. Die Anwendung definiert daher das zum Einsatz kommende Messverfahren.
3D-Punktwolken dienen als Grundlage für die Objektrekonstruktion auf verschiedenen Wegen: a) Engineering Modelling als generalisierte CAD-Konstruktion durch geometrische Primitive und b) Mesh Modelling durch Dreiecksvermaschung der Punktwolken zur exakten Oberflächenbeschreibung. Durch die Generalisierung bei der CAD-Konstruktion können sehr schnell Abweichungen vom Sollmaß von bis zu 10 cm (und größer) entstehen, allerdings werden durch die Anpassung auf geometrische Primitive eine signifikante Datenreduktion und eine topologische Strukturierung erreicht. Untersuchungen haben jedoch auch gezeigt, dass die Anzahl der Polygone bei der Dreiecksvermaschung je nach Oberflächenbeschaffenheit des Objektes auf 25% und sogar auf 10% der Originaldatenmenge bei intelligenter Ausdünnung (z.B. krümmungsbasiert) reduziert werden kann, ohne die visuelle und geometrische Qualität des Ergebnisses zu stark zu beeinträchtigen. Je nach Objektgröße können hier Abweichungen von unter einem Millimeter (z.B. bei archäologischen Fundstücken) bis zu 5 cm im Durchschnitt bei größeren Objekten erreicht werden. Heute können Punktwolken eine wichtige Grundlage zur Konstruktion der Umgebung für viele Virtual Reality Anwendungen bilden, bei denen die geometrische Genauigkeit der modellierten Objekte im Einzelfall keine herausragende Rolle spielt. / 3D point clouds have significantly changed the surveying of objects in the last 25 years. Since in many applications, the individual point measurements were replaced through area-based measurements in form of point clouds, a paradigm shift in surveying has been fulfilled. This change in measurement methodology was made possible with the rapid developments in instrument manufacturing and computer technology. Today, airborne and terrestrial laser scanners, as well as hand-held 3D scanners directly generate dense point clouds, while dense point clouds are indirectly derived from photos of image-based recording systems used for detailed 3D object reconstruction in almost any scale.
In this work, investigations into the geometric accuracy of some of these scanning systems are pre-sented to document and evaluate their performance. While terrestrial laser scanners mostly met the accuracy specifications in the investigations, 3-5 mm for 3D points and distance measurements as defined in the technical specifications of the system manufacturer, significant differences are shown, however, by many tested hand-held 3D scanners. These observed deviations indicate a certain geometric instability of the measuring system, caused either by the construction/manufacturing and/or insufficient calibration (particularly with regard to the scale). It is apparent that most of the hand-held 3D scanners are at the beginning of the technical development, which still offers potential for optimization.
The image-based recording systems have been increasingly accepted by the market as flexible and efficient alternatives to laser scanning systems for about ten years. The research of image-based recording and evaluation methods presented in this work has shown that these coloured 3D point clouds correspond to the accuracy of the laser scanner depending on the image scale and surface material of the object. Compared with the results of most hand-held 3D scanners, point clouds gen-erated by image-based recording techniques exhibit superior quality. However, the Creaform HandySCAN 700, based on a photogrammetric recording principle (stereo photogrammetry), shows as the solitary exception of the hand-held 3D scanners very good results with better than 30 micrometres on average, representing accuracies even in the range of the reference systems (here structured light projection systems).
The developed test procedures and the corresponding investigations have been practically proven for both terrestrial and hand-held 3D scanners, since comparable results can be obtained using the VDI/VDE guidelines 2634, which allows statements about the performance of the tested scanning system for practice-oriented users. For object scans comprised of multiple single scan acquired in static mode, errors of the scan registration have to be added, while for scans collected in the kine-matic mode the accuracies of the (absolute) position sensors will be added on the error budget of the point cloud. A careful system calibration of various positioning and recording sensors of the mobile multi-sensor system used in kinematic mode allows a 3D point accuracy of about 3-5 cm, which if necessary can be improved with higher quality sensors under good conditions. With static scans an accuracy of better than 1 cm for 3D points can be achieved surpassing the potential of mobile recording systems, which are economically much more efficient if larger areas have to be scanned.
The 3D point clouds are the basis for object reconstruction in two different ways: a) engineering modelling as generalized CAD construction through geometric primitives and b) mesh modelling by triangulation of the point clouds for the exact representation of the surface. Deviations up to 10 cm (and possibly higher) from the nominal value can be created very quickly through the generalization in the CAD construction, but on the other side a significant reduction of data and a topological struc-turing can be achieved by fitting the point cloud into geometric primitives. However, investigations have shown that the number of polygons can be reduced to 25% and even 10% of the original data in the mesh triangulation using intelligent polygon decimation algorithms (e.g. curvature based) depending on the surface characteristic of the object, without having too much impact on the visual and geometric quality of the result. Depending on the object size, deviations of less than one milli-metre (e.g. for archaeological finds) up to 5 cm on average for larger objects can be achieved. In the future point clouds can form an important basis for the construction of the environment for many virtual reality applications, where the visual appearance is more important than the perfect geometric accuracy of the modelled objects.
|
9 |
Mapování skalních útvarů pomocí geoinformačních metod / Topographic mapping of rock formations usig GIS methodsBashir, Faraz Ahmed January 2021 (has links)
Topographic mapping of rock formations using GIS methods Abstract This thesis deals with issues of creating 3D models of rock formations with data from terrestrial laser scanning, close range photogrammetry and UAV photogrammetry. The theoretical part focuses on explaining functioning and usage of those methods. Beside that there is described issues of 3D point cloud filtering. Practical part of this work describes data collecting and processing procedure. Further there is proposed filtering process which aim to remove noise points from point clouds and remove vegetation with combination of vegetation index ExG, clustering algorithm DBSCAN and Hough Transform. The proposed method is tested on the selected rock formation in Bohemian Switzerland National Park. The evaluation of the proposed method is based on comparison of models filtered with proposed method with reference models, which are filtered manually. Finally, the achieved accuracy of the models is evaluated using geodetic measurements. key words laser scanning, photogrammetry, UAV, point cloud, data filtering
|
10 |
Automatic Reconstruction of Urban Objects from Mobile Laser Scanner DataNalani, Hetti Arachchige 22 May 2014 (has links)
Aktuelle 3D-Stadtmodelle werden immer wichtiger in verschiedenen städtischen Anwendungsbereichen. Im Moment dienen sie als Grundlage bei der Stadtplanung, virtuellem Tourismus und Navigationssystemen.
Mittlerweile ist der Bedarf an 3D-Gebäudemodellen dramatisch gestiegen. Der Grund dafür sind hauptsächlich Navigationssysteme und Onlinedienste wie Google Earth. Die Mehrheit der Untersuchungen zur Rekonstruktion von Gebäudemodellen von Luftaufnahmen konzentriert sich ausschließlich auf Dachmodellierung. Jedoch treiben Anwendungen wie Virtuelle Realität und Navigationssysteme die Nachfrage nach detaillieren Gebäudemodellen, die nicht nur die geometrischen Aspekte sondern auch semantische Informationen beinhalten, stark an. Urbanisierung und Industrialisierung beeinflussen das Wachstum von urbaner Vegetation drastisch, welche als ein wesentlicher Teil des Lebensraums angesehen wird. Aus diesem Grund werden Aufgaben wie der Ökosystemüberwachung, der Verbesserung der Planung und des Managements von urbanen Regionen immer mehr Aufmerksamkeit geschenkt. Gleichermaßen hat die Erkennung und Modellierung von Bäumen im Stadtgebiet sowie die kontinuierliche Überprüfung ihrer Inventurparameter an Bedeutung gewonnen.
Die steigende Nachfrage nach 3D-Gebäudemodellen, welche durch Fassadeninformation ergänzt wurden, und Informationen über einzelne Bäume im städtischen Raum erfordern effiziente Extraktions- und Rekonstruktionstechniken, die hochgradig automatisiert sind. In diesem Zusammenhang ist das Wissen über die geometrische Form jedes Objektteils ein wichtiger Aspekt. Heutzutage, wird das Mobile Laser Scanning (MLS) vermehrt eingesetzt um Objekte im städtischen Umfeld zu erfassen und es entwickelt sich zur Hauptquelle von Daten für die Modellierung von urbanen Objekten. Eine Vielzahl von Objekten wurde schon mit Daten von MLS rekonstruiert. Außerdem wurden bereits viele Methoden für die Verarbeitung von MLS-Daten mit dem Ziel urbane Objekte zu erkennen und zu rekonstruieren vorgeschlagen. Die 3D-Punkwolke einer städtischen Szene stellt eine große Menge von Messungen dar, die viele Objekte von verschiedener Größe umfasst, komplexe und unvollständige Strukturen sowie Löcher (Rauschen und Datenlücken) enthält und eine inhomogene Punktverteilung aufweist. Aus diesem Grund ist die Verarbeitung von MLS-Punktwolken im Hinblick auf die Extrahierung und Modellierung von wesentlichen und charakteristischen Fassadenstrukturen sowie Bäumen von großer Bedeutung.
In der Arbeit werden zwei neue Methoden für die Rekonstruktion von Gebäudefassaden und die Extraktion von Bäumen aus MLS-Punktwolken vorgestellt, sowie ihre Anwendbarkeit in der städtischen Umgebung analysiert.
Die erste Methode zielt auf die Rekonstruktion von Gebäudefassaden mit expliziter semantischer Information, wie beispielsweise Fenster, Türen, und Balkone. Die Rekonstruktion läuft vollautomatisch ab. Zu diesem Zweck werden einige Algorithmen vorgestellt, die auf dem Vorwissen über die geometrische Form und das Arrangement von Fassadenmerkmalen beruhen. Die initiale Klassifikation, mit welcher die Punkte in Objektpunkte und Bodenpunkte unterschieden werden, wird über eine lokale Höhenhistogrammanalyse zusammen mit einer planaren Region-Growing-Methode erzielt. Die Punkte, die als zugehörig zu Objekten klassifiziert werden, werden anschließend in Ebenen segmentiert, welche als Basiselemente der Merkmalserkennung angesehen werden können. Information über die Gebäudestruktur kann in Form von Regeln und Bedingungen erfasst werden, welche die wesentlichen Steuerelemente bei der Erkennung der Fassadenmerkmale und der Rekonstruktion des geometrischen Modells darstellen. Um Merkmale wie Fenster oder Türen zu erkennen, die sich an der Gebäudewand befinden, wurde eine löcherbasierte Methode implementiert. Einige Löcher, die durch Verdeckungen entstanden sind, können anschließend durch einen neuen regelbasierten Algorithmus eliminiert werden. Außenlinien der Merkmalsränder werden durch ein Polygon verbunden, welches das geometrische Modell repräsentiert, indem eine Methode angewendet wird, die auf geometrischen Primitiven basiert. Dabei werden die topologischen Relationen unter Beachtung des Vorwissens über die primitiven Formen analysiert. Mögliche Außenlinien können von den Kantenpunkten bestimmt werden, welche mit einer winkelbasierten Methode detektiert werden können. Wiederkehrende Muster und Ähnlichkeiten werden ausgenutzt um geometrische und topologische Ungenauigkeiten des rekonstruierten Modells zu korrigieren.
Neben der Entwicklung des Schemas zur Rekonstruktion des 3D-Fassadenmodells, sind die Segmentierung einzelner Bäume und die Ableitung von Attributen der städtischen Bäume im Fokus der Untersuchung. Die zweite Methode zielt auf die Extraktion von individuellen Bäumen aus den Restpunktwolken. Vorwissen über Bäume, welches speziell auf urbane Regionen zugeschnitten ist, wird im Extraktionsprozess verwendet. Der formbasierte Ansatz zur Extraktion von Einzelbäumen besteht aus einer Reihe von Schritten. In jedem Schritt werden Objekte in Abhängigkeit ihrer geometrischen Merkmale gefunden. Stämme werden unter Ausnutzung der Hauptrichtung der Punktverteilung identifiziert. Dafür werden Punktsegmente gesucht, die einen Teil des Baumstamms repräsentieren. Das Ergebnis des Algorithmus sind segmentierte Bäume, welche genutzt werden können um genaue Informationen über die Größe und Position jedes einzelnen Baumes abzuleiten. Einige Beispiele der Ergebnisse werden in der Arbeit angeführt.
Die Zuverlässigkeit der Algorithmen und der Methoden im Allgemeinen wurden unter Verwendung von drei Datensätzen, die mit verschiedenen Laserscannersystemen aufgenommen wurden, verifiziert. Die Untersuchung zeigt auch das Potential sowie die Einschränkungen der entwickelten Methoden wenn sie auf verschiedenen Datensätzen angewendet werden. Die Ergebnisse beider Methoden wurden quantitativ bewertet unter Verwendung einer Menge von Maßen, die die Qualität der Fassadenrekonstruktion und Baumextraktion betreffen wie Vollständigkeit und Genauigkeit. Die Genauigkeit der Fassadenrekonstruktion, der Baumstammdetektion, der Erfassung von Baumkronen, sowie ihre Einschränkungen werden diskutiert. Die Ergebnisse zeigen, dass MLS-Punktwolken geeignet sind um städtische Objekte detailreich zu dokumentieren und dass mit automatischen Rekonstruktionsmethoden genaue Messungen der wichtigsten Attribute der Objekte, wie Fensterhöhe und -breite, Flächen, Stammdurchmesser, Baumhöhe und Kronenfläche, erzielt werden können. Der gesamte Ansatz ist geeignet für die Rekonstruktion von Gebäudefassaden und für die korrekte Extraktion von Bäumen sowie ihre Unterscheidung zu anderen urbanen Objekten wie zum Beispiel Straßenschilder oder Leitpfosten. Aus diesem Grund sind die beiden Methoden angemessen um Daten von heterogener Qualität zu verarbeiten. Des Weiteren bieten sie flexible Frameworks für das viele Erweiterungen vorstellbar sind. / Up-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds.
The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models.
Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree.
The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned.
|
Page generated in 0.1054 seconds