• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 21
  • 19
  • 16
  • 13
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural Effects on 3D-Printed Radar Materials

Lindqvist, Bradley January 2024 (has links)
Additive manufacturing (AM), also known as 3D-printing, has gained widespread adoption across various industries owing to advancements in manufacturing methods and printers. This technology offers users creative freedom, diverse manufacturing methods, and a wide range of material options. Consequently, many industries, including defense, are keen on integrating AM into their production processes. In the defense sector, AM facilitates rapid prototyping and the efficient blending of different materials, unlocking new possibilities that conventional methods cannot achieve. The ability to fabricate intricate geometries is another pivotal aspect driving the preference for AM. Thus, this study aims to explore the potential of lattice structures to impart unique material properties applicable in defense applications. Specifically, the investigation focuses on understanding the impact of discharge directions and lattice structures on radar properties for Material X. Analysis revealed that while discharge direction exhibited minimal influence on radar properties, different lattice structures could modify these properties by altering parameters such as unit cell size and panel thickness. Keywords: Additive manufacturing, 3D printing, lattice structures, discharge direction, radar properties, defense industry
22

Modélisation avancée de formes complexes de pièces mécaniques pour lesprocédés de fabrication additive / Advanced modeling of complex mechanical structures for additive manufacturing

Chougrani, Laurent 14 December 2017 (has links)
Les procédés de fabrication additive ont connus un fort essor dans les dernières décennies et entament aujourd'hui leur phase d'industrialisation pérenne. L'industrie, dans un souci d'améliorer sans cesse le ratio masse/rigidité des systèmes qu'elle produit (notamment l'industrie aéronautique), a pris conscience du potentiel de ces technologies à produire des structures plus complexes que les procédés classiques. Elle cherche aujourd'hui à tirer profit de ce potentiel pour alléger encore plus les pièces produites en utilisant notamment des géométries de type réseaux ou alvéolaires (Lattice en anglais). Les travaux présentés dans ce manuscrit ont pour but de proposer une méthodologie, des modèles et des outils permettant la conception, le dimensionnement et l'optimisation de telles structures en vue de leur fabrication par procédés additifs. Le framework proposé peut être résumé par les huit étapes ci-dessous:- Importation de l'espace de conception, comprenant également les cas de chargement.- Optimisation topologique sur l'espace de conception.- Reconstruction de la géométrie, appelée primitive, qui servira de support à l'insertion du réseau.- Calcul par éléments finis qui peut être réalisé pour s'assurer de la bonne tenue mécanique.- Définition de la topologie du réseau, par l'intermédiaire d'un graphe 3D.- Déformation du réseau et optimisation mécanique du réseau.- Reconstruction des volumes.- Préparation des fichiers de données et impression 3D. / Additive manufacturing processes have been quickly growing those past decades and are now getting to their sustainable industrial. Industry has been caring about the mass to rigidity ratio of the structures it produces (especially in aeronautics), and is now acknowledging the potential of additive processes to produce more complex shapes than classical processes. Industry is now trying to take advantage of this potential by designing highly complex structures like lattices or metal foams. The work that is presented in this document propose a methodology, models and numerical tools allowing the conception, dimensioning and optimization of such structures through additive manufacturing. The proposed framework can be describe through the height following steps:- Importing the design space and the technical requirement (load cases).- Topology optimization of the design space- Geometry reconstruction to create a primitive which will be the lattice insertion area.- Finite elements computation to ensure that the structure meets the requirements.- Lattice topology definition using 3D graphs.- Lattice deformation and optimization.- Creation of the volumes around the lattice.- Printing file creation and 3D printing.
23

Aditivní výroba prostorových prutů z polymerních materiálů / Additive manufacturing of spatial trusses from polymeric materials

Křivohlavý, Petr January 2021 (has links)
This thesis is focused on creating polymer lattice struts without any necessary support in full length using robotic 3D printing. The aim of the thesis is to find suitable process parameters and printing strategies with respect to the accuracy of the polymer struts. A statistical model of effects of individual process parameters has been produced to achieve stated objectives. The model enables finding optimal process parameters. The printing strategies for thus established process parameters are tested to increase the accuracy of the finished print and the quality of the bonds between individual struts. The accuracy assessment is executed using optical 3D metrology. The maximum deviation from the nominal shape 0.54mm has been accomplished using discovered process parameters and printing strategies.
24

Influence of Consolidation and Interweaving on Compression Behavior of IsoTruss™ Structures

Hansen, Steven Matthew 09 March 2004 (has links) (PDF)
Composite IsoTruss™ structures incorporate intersecting longitudinal and helical members. At the intersections, the fiber tows can be interwoven to achieve mechanical interlocking for increased joint integrity. Interlocking introduces gaps and curvilinear fiber paths similar to the crossovers in filament-wound structures, potentially facilitating local delamination within the members, thus reducing the strength and/or damage tolerance of the structure. Optimizing the interlocking pattern at the joints along with efficient consolidation minimizes these effects. Joint specimens were fabricated using a specially designed machine. Specific tow intersection patterns at the joint were: 1) Completely encapsulating the longitudinal member with the tows of the helical member; and 2) Interweaving the tows of the helical member with the tows of the longitudinal member. Consolidation was accomplished using: 1) a braided sleeve; 2) a coiled sleeve; 3) a sparse spiral Kevlar® wrap; 4) a polyester shrink tape sleeve; 5) twisting the entire bundle of longitudinal fiber tows; and 6) cinching the joints using aramid fiber. Ultimate compression strength and stiffness is directly related to the straightness of the tows in the longitudinal members at the intersections. An encapsulated joint reduces member strength by only 4.6%; whereas, an interwoven joint reduces member strength by 30.5%. The fiber paths of the longitudinal member in encapsulated joints are straighter than in interwoven joints, resulting in an average strength difference of 26.2%. Physical properties, strength, and stiffness show that consolidation quality directly affects performance. Consolidation using sleeves provides high quality consolidation, high strength, and high stiffness. Encapsulated joints consolidated using sleeves have an average ultimate strength and Young's modulus 34% and 21% higher, respectively, than encapsulated joints consolidated using other methods. Interwoven joints consolidated using sleeves have an average ultimate strength and Young's modulus 28% and 19% higher, respectively, than interwoven joints consolidated using other methods. Consolidating specimens using a braided sleeve yields the highest quality based on consistency, strength, and stiffness. Consolidating specimens by twisting the longitudinal member yields the lowest strength and stiffness. These conclusions will be applied to IsoTrussâ„¢ grid structure design and manufacturing technology.
25

Topology and Lattice-Based Structural Design Optimization for Additively Manufactured Medical Implants

Peto, Marinela 05 1900 (has links)
Topology-based optimization techniques and lattice structures are powerful ways to accomplish lightweight components with enhanced mechanical performance. Recent developments in additive manufacturing (AM) have led the way to extraordinary opportunities in realizing complex designs that are derived from topology and lattice-based structural optimization. The main aim of this work is to give a contribution, in the integration between structural optimization techniques and AM, by proposing a setup of a proper methodology for rapid development of optimized medical implants addressing oseeointegration and minimization of stress shielding related problems. The validity of the proposed methodology for a proof of concept was demonstrated in two real-world case studies: a tibia intramedullary implant and a shoulder hemi prosthetics for two bone cancer patients. The optimization was achieved using topology optimization and replacement of solid volumes by lattice structures. Samples of three lattice unit cell configurations were designed, fabricated, mechanically tested, and compared to select the most proper configuration for the shoulder hemi prosthesis. Weight reductions of 30% and 15% were achieved from the optimization of the initial design of the tibia intramedullary implant and the shoulder hemiprosthesis respectively compared to initial designs. Prototypes were fabricated using selective laser melting (SLM) and direct light processing (DLP) technologies. Validation analysis was performed using finite element analysis and compressive mechanical testing. Future work recommendations are provided for further development and improvement of the work presented in this thesis.
26

The development of lightweight cellular structures for metal additive manufacturing

Hussein, Ahmed Yussuf January 2013 (has links)
Metal Additive Manufacturing (AM) technologies in particular powder bed fusion processes such as Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are capable of producing a fully-dense metal components directly from computer-aided design (CAD) model without the need of tooling. This unique capability offered by metal AM has allowed the manufacture of inter-connected lattice structures from metallic materials for different applications including, medical implants and aerospace lightweight components. Despite the many promising design freedoms, metal AM still faces some major technical and design barriers in building complex structures with overhang geometries. Any overhang geometry which exceeds the minimum allowable build angle must be supported. The function of support structure is to prevent the newly melted layer from curling due to thermal stresses by anchoring it in place. External support structures are usually removed from the part after the build; however, internal support structures are difficult or impossible to remove. These limitations are in contrast to what is perceived by designers as metal AM being able to generate all conceivable geometries. Because support structures consume expensive raw materials, use a considerable amount of laser consolidation energy, there is considerable interest in design optimisation of support structure to minimize the build time, energy, and material consumption. Similarly there is growing demand of developing more advanced and lightweight cellular structures which are self-supporting and manufacturable in wider range of cell sizes and volume fractions using metal AM. The main focuses of this research is to tackle the process limitation in metal AM and promote design freedom through advanced self-supporting and low-density Triply Periodic Minimal Surface (TPMS) cellular structures. Low density uniform, and graded, cellular structures have been developed for metal AM processes. This work presents comprehensive experimental test conducted in SLM and DMLS processes using different TPMS cell topologies and materials. This research has contributed to new knowledge in understanding the manufacturability and mechanical behaviour of TPMS cellular structures with varying cell sizes, orientations and volume fractions. The new support structure method will address the saving of material (via low volume cellular structures and easy removal of powder) and saving of energy (via reduced build-time).
27

Characterization and optimization of lattice structures made by Electron Beam Melting / Caractérisation et optimisation de structures treillis fabriquées par EBM

Suard, Mathieu 13 November 2015 (has links)
Le récent développement de la Fabrication Additive de pièces métalliques permet d'élaborer directement des structures à partir de modèles 3D. En particulier, la technologie "Electron Beam Melting" (EBM) permet la fusion sélective, couche par couche, de poudres métalliques. Elle autorise la réalisation de géométries très complexes mais apporte de nouvelles contraintes de fabrication.Ce travail se concentre sur la caractérisation géométrique et mécanique de structures treillis produites par cette méthode. Les pièces fabriquées sont comparées au design initial à travers des caractérisations par tomographie aux rayons X. Les propriétés mécaniques sont testées en compression uni-axiale. Pour les poutres de faibles épaisseur, la différence entre la structure numérique et celle fabriquée devient significative. Les écarts au design initial se traduisent pour chaque poutre par un concept de matière mécaniquement efficace. D'un point de vue modélisation, ce concept est pris en compte en remplaçant la poutre fabriquée par un cylindre avec un diamètre mécaniquement équivalent. Ce diamètre équivalent est utilisé dans des simulations et optimisations "réalistes" intégrant ainsi les contraintes de fabrication de la technologie EBM.Différentes stratégies sont aussi proposées pour réduire la proportion de volume "inefficace" et améliorer le contrôle de la taille des poutres, soit en jouant sur les paramètres procédé et les stratégies de fusion, soit en effectuant des post-traitements. / The recent development of Additive Manufacturing for the fabrication of metallic parts allows structures to be directly manufactured from 3D models. In particular, the "Electron Beam Melting" (EBM) technology is a suitable process which selectively melts a powder bed layer by layer. It can build very complex geometries but brings new limitations that have to be quantified.This work focuses on the structural and mechanical characterization of lattice structures produced by such technology. The structural characterization mainly rely on X-ray tomography whereas mechanical properties are assessed by uni-axial compression. The geometry and related properties of the fabricated structures are compared with the designed ones. For small strut size, the difference between the designed structure and the produced one is large enough to impact the desired mechanical properties. The concept of mechanical efficient volume is introduced. For the purpose of simulation, this concept is taken into account by replacing the struts by a cylinder with a textit{mechanical equivalent diameter}. After validation, it has been used into "realistic" simulation and optimization procedures, thus taking into account the process constraints.Post-treatments (Chemical Etching and Electro-Chemical Polishing) were applied on lattice structures to get rid of the inefficient matter by decreasing the surface roughness. The control of the size of the fabricated struts was improved by tuning the process strategies and parameters.
28

The Line Spectral Frequency Model Of A Finite Length Sequence And Its Applications

Yedlapalli, Satya. Sudhakar 01 1900 (has links) (PDF)
No description available.
29

Development and Application of a Computational Modeling Scheme for Periodic Lattice Structures

Fadeel, Abdalsalam 03 June 2021 (has links)
No description available.
30

Additively Manufactured Ti-6Al-4V Biomimetic Lattice Structures for Patient-Specific Orthopedic Implants: The Effect of Unit Cell Geometry, Pore Size, and Pulsed Electromagnetic Field Stimulation on the Osseointegration of MG-63 Cells in Vitro, Mechanical Properties, and Surface Characterization

Papazoglou, Dimitri Pierre 15 May 2023 (has links)
No description available.

Page generated in 0.0593 seconds