191 |
Phylogenetics of the Monotropoideae (Ericaceae) with Special Focus on the Genus <em>Hypopitys</em> Hill, together with a Novel Approach to Phylogenetic Inference Using Lattice TheoryBroe, Michael Brian January 2014 (has links)
No description available.
|
192 |
Frustrated hopping in an air-stable van der Waals metalKoay, Christie Suyi January 2024 (has links)
The 2D honeycomb lattice started as a theoretical construct, until its realization in a crystalline system enabled the study of a host novel exotic phenomena arising from its unique electronic structure. Since the isolation of graphene, the search for crystalline materials hosting interesting electronic structures has only increased with the excitement of correlated phenomena that can arise in the two-dimensional limit.
This dissertation details the characterization of a van der Waals (vdW) material that realizes a novel flat band lattice model via frustrated hopping.
Chapter 1 starts with an introduction into vdW materials and the electronic structure of frustrated lattices. Chapter 2 goes through some of the characterization methods that will be mentioned in this dissertation. Chapter 3 introduces the material that will be the subject of investigation in this thesis and establishes its as arising from a novel flat band lattice model via frustrated hopping. Chapter 4 discusses the electronic properties of newly synthesized analogs of this material. Chapter 5 introduces potential applications of this material in plasmonics. Chapter 6 covers a research story that is independent of the rest of this dissertation. It goes through the optical properties that arise from in-plane structural anisotropy in a superatomic vdW material.
|
193 |
Asymptotic phase diagrams for lattice spin systemsTarnawski, Maciej January 1985 (has links)
We present a method of constructing the phase diagram at low temperatures, using the low temperature expansions. We consider spin Iattice systems described by a Hamiltonian with a d-dimensional perturbation space. We prove that there is a one-one correspondence between subsets of the phase diagram and extremal elements of some family of convex sets. We also solve a linear programming problem of the phase diagram for a set of affine functionals. / Ph. D.
|
194 |
Algorithmic Approaches to Pattern Mining from Structured Data / 構造データからのパターン発見におけるアルゴリズム論的アプローチOtaki, Keisuke 23 March 2016 (has links)
The contents of Chapter 6 are based on work published in IPSJ Transactions on Mathematical Modeling and Its Applications, vol.9(1), pp.32-42, 2016. / 京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19846号 / 情博第597号 / 新制||情||104(附属図書館) / 32882 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 山本 章博, 教授 鹿島 久嗣, 教授 阿久津 達也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
195 |
Férmions em QCD na rede / Fermions in lattice QCDViscardi, Leandro Alex Moreira 27 June 2019 (has links)
O presente trabalho propõe o estudo da cromodinâmica quântica (QCD) através de simulações numéricas da teoria na rede. Inicialmente será apresentada a formulação de integral de trajetória da mecânica quântica para em seguida generalizar os resultados para a teoria quântica de campos. A teoria na rede exigirá a discretização do espaço-tempo e mostraremos como colocar os graus de liberdade bosônicos e fermiônicos na rede. Usaremos a formulação de Wilson para a ação de glúons e férmions na rede. Simulações numéricas em QCD na rede envolvendo férmions são consideravelmente complicadas e têm um custo computacional altamente limitante. Mais precisamente, não é possível simular a estrutura do vácuo fermiônico sem algum tipo de aproximação. Neste trabalho usaremos a aproximação quenched da QCD, que consiste em negligenciar os efeitos de loops de quarks do vácuo. Também empregaremos apenas dois sabores de quarks degenerados, correspondendo às duas espécies de quarks leves presentes na teoria. Ao longo deste trabalho serão exploradas as dificuldades encontradas em colocar quarks na rede e também será determinado o espectro de hádrons como uma aplicação de interesse. Contudo, também estudaremos um problema simples envolvendo a teoria de gauge pura na rede, isto é, calcularemos o valor esperado para o operador plaqueta. Este estudo servirá como um pré aquecimento antes de lidar com o problema mais desafiador do espectro de hádrons e também permitirá aprender algumas técnicas de simulação que serão utilizadas na determinação do espectro de hádrons, a saber, o método de Monte Carlo e os algoritmos banho térmico e sobre-relaxação, que servem para construir configurações de gauge (glúons). A interpretação dos resultados obtidos deverá ser realizada a partir da análise estatística dos dados. Estimaremos o tempo de termalização do operador plaqueta a partir da visualização da equilibração do resultado e usaremos o método bloco de dados para estimar o tempo de correlação das configurações de gauge. Essas estimativas serão importantes para decidirmos os parâmetros de simulação adequados para o espectro de hádrons, pois neste caso não teremos acesso à quantidade suficiente de dados para determinar o valor desses parâmetros. Para a determinação de erros estatísticos será usado o método de jackknife. O cálculo do espectro de hádrons envolve a inversão de uma matriz esparsa não positiva definida, mais precisamente, o operador de Dirac. Esta será a parte que mais consumirá tempo nas simulações e usaremos o algoritmo gradiente biconjugado estabilizado (Bi-CGStab) para a inversão. A determinação da massa de hádrons somente será possível após a fixação da massa experimental de algum hádron (usaremos o píon), e após a extrapolação quiral dos resultados, que será realizada a partir do método dos mínimos quadrados não linear. Ao final deste trabalho obteremos uma estimava para a massa do próton e do méson rho. / This work proposes the study of quantum cromodynamics (QCD) through numerical simulations of the lattice theory. Initially we will present the path integral formulation of quantum mechanics and then generalize these results to quantum field theory. The lattice theory requires the discretization of space-time and we will show how to put the fermionic and gluonic degrees of freedom on the lattice. We will use Wilson’s formulation for the action of fermions and gluons. Numerical simulations in lattice QCD with fermions are considerably complicated and their cost is highly limiting. More precisely, it is not possible to simulate the fermionic structure of the vacuum without any kind of approximation. We will use the quenched approximation in this work, which consists of neglecting the effects of vacuum quark loops. We also will employ only two flavors of degenerate quarks corresponding to the two species of light quarks present in the theory. Throughout the work we will discuss the difficulties related to putting quarks on the lattice and we will evaluate the hadron spectrum as an application of interest. However, we also must study a simple problem involving the lattice pure-gauge theory, i.e., we will compute the mean value of the plaquette operator. This will be a warm-up study before dealing with the more challenging problem of the hadron spectrum and will allow us to learn some simulation techniques that will be used in the hadron spectrum determination, namely the Monte Carlo method and the heat bath and overrelaxation algorithms, which are useful to build gauge configurations (i.e. gluon configurations). The interpretation of the results obtained should be performed using statistical analysis of the data. We will estimate the thermalization time of the plaquette operator from the visualization of the equilibration result and will estimate the correlation time of gauge configurations using the data blocking method. These estimates are important to decide the suitable simulation parameters for the hadron spectrum, because in that case we will not have access to a quantity of data large enough to determine the value of these parameters. For the statistical error determination we will use the jackknife method. The calculation of the hadron spectrum involves the inversion of a non positive definite sparse matrix, more precisely, the Dirac operator. This will be the most time-consuming step of the simulation and we will use the Bi-Conjugate Gradient Stabilized (Bi-CGRStab) algorithm to do the inversion. The determination of hadron masses will only be possible after fixing an experimental mass of some hadron (we will use the pion), and after the quiral extrapolation of the results, which will be performed using the non-linear least square method. At the end of this work we will obtain an estimate of the mass of the proton and of the rho meson.
|
196 |
Problems and results in partially ordered sets, graphs and geometryBiro, Csaba 26 June 2008 (has links)
The thesis consist of three independent parts. In the first part, we investigate the height sequence of an element of a partially ordered set. Let $x$ be an element of the partially ordered set $P$. Then $h_i(x)$ is the number of linear extensions of $P$ in which $x$ is in the $i$th lowest position. The sequence ${h_i(x)}$ is called the height sequence of $x$ in $P$. Stanley proved in 1981 that the height sequence is log-concave, but no combinatorial proof has been found, and Stanley's proof does not reveal anything about the deeper structure of the height sequence. In this part of the thesis, we provide a combinatorial proof of a special case of Stanley's theorem. The proof of the inequality uses the Ahlswede--Daykin Four Functions Theorem.
In the second part, we study two classes of segment orders introduced by Shahrokhi. Both classes are natural generalizations of interval containment orders and interval orders. We prove several properties of the classes, and inspired by the observation, that the classes seem to be very similar, we attempt to find out if they actually contain the same partially ordered sets. We prove that the question is equivalent to a stretchability question involving certain sets of pseudoline arrangements. We also prove several facts about continuous universal functions that would transfer segment orders of the first kind into segments orders of the second kind.
In the third part, we consider the lattice whose elements are the subsets of ${1,2,ldots,n}$. Trotter and Felsner asked whether this subset lattice always contains a monotone Hamiltonian path. We make progress toward answering this question by constructing a path for all $n$ that satisfies the monotone properties and covers every set of size at most $3$. This portion of thesis represents joint work with David M.~Howard.
|
197 |
Isotone fuzzy Galois connections and their applications in formal concept analysisKonecny, Jan. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2009. / Includes bibliographical references.
|
198 |
Mathematical foundations of graded knowledge spacesBartl, Eduard. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2009. / Includes bibliographical references.
|
199 |
Abordagem algebrica e geometrica de reticulados / Algebraic and geometric approaches to latticesCarlos, Tatiana Bertoldi 05 September 2007 (has links)
Orientador: Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T04:41:55Z (GMT). No. of bitstreams: 1
Carlos_TatianaBertoldi_D.pdf: 779190 bytes, checksum: d0ff8f53ff44a5f19c7edb1427cd1a82 (MD5)
Previous issue date: 2007 / Resumo: Neste trabalho abordamos a construção de reticulados usando propriedades da teoria dos números algébricos. Enfocamos particularmente a construção, como reticulado ideal, de rotações do reticulado n-dimensional dos inteiros, usando corpos ciclotômicos. Reticulados desta forma tem se mostrado uma eficiente ferramenta para obtenção de bons esquemas de codificação para canais com desvanecimento, pois permitem estimativas da distância produto e diversidade, parâmetros que controlam a probabilidade de erro no envio de informações por estes canais. Apresentamos uma nova construção de tais reticulados no caso em que n é uma potência de 2, através do subcorpo maximal real do n-ésimo corpo ciclotômico. Estabelecemos também condições para que um reticulado ideal seja rotação do reticulado n-dimensional dos inteiros, usando algoritmos de redução de base, LLL (Lenstra-Lenstra- Lovász) e Minkowski. Outros resultados incluem caracterizações geométricas de grafos circulantes e de alguns reticulados construídos algebricamente. / Abstract: In this work we approach lattice constructions using properties of algebraic number theory. One focus is on the construction of ideal lattices via cyclotomic fields. Those lattices have been used as an efficient tool for designing coding strategies for the Rayleigh fading channels since it is possible to estimate the product distance and the diversity, parameters which control the error probability transmission for those channels. A special case, due to "shaping gain", is when those lattices are rotations of the n-dimensional integer lattice. We present a new construction of such lattices when n is a power of 2, via the maximal sub-field of the n-cyclotomic field. We also establish conditions for an ideal lattice to be a Zn-lattice using the Minkowski and the LLL (Lenstra-Lenstra-Lovasz) reductions. Other results include geometric characterizations of circulant graphs and of some algebraic lattices. / Doutorado / Doutor em Matemática
|
200 |
De codigos binarios a reticulados e codigos esfericos / From binary codes to lattices and spherical codesSilva, Anderson Tiago da 04 December 2007 (has links)
Orientadores: Sueli Irene Rodrigues Costa, Simone Maria de Moraes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T17:40:32Z (GMT). No. of bitstreams: 1
Silva_AndersonTiagoda_M.pdf: 781127 bytes, checksum: 22670fa6bf0a9cc9e4533bcc2ef952d8 (MD5)
Previous issue date: 2007 / Resumo: Este trabalho está dividido essencialmente em quatro tópicos. O primeiro capítulo é dedicado a uma introdução à teoria dos códigos corretores de erros com algumas propriedades e exemplos. No segundo capítulo abordamos reticulados e suas propriedades com foco na análise do quociente de reticulados gerando grafos em toros planares, grafos circulantes obtidos através de quociente de reticulados e ladrilhamentos associados. O terceiro capítulo é dedicado a códigos esféricos, com ênfase na obtenção de códigos ótimos. Foram introduzidos alguns limitantes importantes como o de Rankim, e a demonstração de que alguns códigos esféricos como o simplex e biortogonal são ótimos. No capítulo quatro apresentamos uma construção de reticulados através de códigos binários e também a construção de códigos esféricos a partir de reticulados que possuem sub-reticulados com base ortogonal. Analisamos o caso especial do reticulado BCC que é o de melhor densidade no espaço e pode ser gerado por código binário. Mostramos que o quociente deste por um sub reticulado especial produz o melhor código esférico associado ao grupo comutativo Z2 2 ×Z4 . Também identificamos o reticulado que é associado ao melhor código de grupo comutativo de 16 elementos em R6 / Abstract: In this work it is presented through examples a connection between inary codes, lattices and spherical codes. A brief introduction to coding theory, properties and examples is included in the first chapter. In Chapter 2 lattices are approached with focus on the quotient of lattices, graphs on flat tori and connections with circulant graphs. An introduction to spherical codes and some of their bounds, as the Ranking bound, are described in Chapter 3. Finally in Chapter 4 the three topics above are connected. The construction of lattices from linear binary codes and the construction of spherical codes from the lattices which have orthogonal sub-lattices are presented. We analyze specifically the case of the three dimensional BCC lattice, which has the best packing density for this dimension, and show that a quotient of this lattice give rise to the best spherical code associate to the commutative group Z2 2 ×Z4. We also identify the lattice which is associate to the best commutative group code with 16 elements in em R6 / Mestrado / Mestre em Matemática
|
Page generated in 0.0599 seconds