221 |
Robust estimation for spatial models and the skill test for disease diagnosisLin, Shu-Chuan 25 August 2008 (has links)
This thesis focuses on (1) the statistical methodologies for the estimation of spatial data with outliers and (2) classification accuracy of disease diagnosis.
Chapter I, Robust Estimation for Spatial Markov Random Field Models:
Markov Random Field (MRF) models are useful in analyzing spatial lattice data
collected from semiconductor device fabrication and printed circuit board manufacturing processes or agricultural field trials. When outliers are present in the data, classical parameter estimation techniques (e.g., least squares) can be inefficient and potentially mislead the analyst. This chapter extends the MRF model to accommodate outliers and proposes robust parameter estimation methods such as the robust M- and RA-estimates. Asymptotic distributions of the estimates with differentiable and non-differentiable robustifying function are derived. Extensive simulation studies explore robustness properties of the proposed methods in situations with various amounts of outliers in different patterns. Also provided are studies of analysis of grid data with and without the edge information. Three data sets taken from the literature illustrate advantages of the methods.
Chapter II, Extending the Skill Test for Disease Diagnosis:
For diagnostic tests, we present an extension to the skill plot introduced by Mozer
and Briggs (2003). The method is motivated by diagnostic measures for osteoporosis in a study. By restricting the area under the ROC curve (AUC) according to the skill statistic, we have an improved diagnostic test for practical applications by considering the misclassification costs. We also construct relationships, using the Koziol-Green model and mean-shift model, between the diseased group and the healthy group for improving the skill statistic. Asymptotic properties of the skill statistic are provided. Simulation studies compare the theoretical results and the estimates under various disease rates and misclassification costs. We apply the proposed method in classification of osteoporosis data.
|
222 |
Concept Approximations: Approximative Notions for Concept LatticesMeschke, Christian 13 April 2012 (has links)
In this thesis, we present a lattice theoretical approach to the field of approximations. Given a pair consisting of a kernel system and a closure system on an underlying lattice, one receives a lattice of approximations. We describe the theory of these lattices of approximations. Furthermore, we put a special focus on the case of concept lattices. As it turns out, approximation of formal concepts can be interpreted as traces, which are preconcepts in a subcontext.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography / In der vorliegenden Arbeit beschreiben wir einen verbandstheoretischen Zugang zum Thema Approximieren. Ausgehend von einem Kern- und einem Hüllensystem auf einem vollständigen Verband erhält man einen Approximationsverband. Wir beschreiben die Theorie dieser Approximationsverbände. Des Weiteren liegt dabei ein Hauptaugenmerk auf dem Fall zugrundeliegender Begriffsverbände. Wie sich nämlich herausstellt, lassen sich Approximationen formaler Begriffe als Spuren auffassen, welche diese in einem vorgegebenen Teilkontext hinterlassen.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography
|
223 |
An investigation of parity and time-reversal symmetry breaking in tight-binding latticesScott, Derek Douglas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / More than a decade ago, it was shown that non-Hermitian Hamiltonians with combined parity (P) and time-reversal (T ) symmetry exhibit real eigenvalues over a range of parameters. Since then, the field of PT symmetry has seen rapid progress on both the theoretical and experimental fronts. These effective Hamiltonians are excellent candidates for describing open quantum systems with balanced gain and loss. Nature seems to be replete with examples of PT -symmetric systems; in fact, recent experimental investigations have observed the effects of PT symmetry breaking in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and coupled electrical circuits.
Recently, PT -symmetric Hamiltonians for tight-binding lattice models have been extensively investigated. Lattice models, in general, have been widely used in physics due to their analytical and numerical tractability. Perhaps one of the best systems for experimentally observing the effects of PT symmetry breaking in a one-dimensional lattice with tunable hopping is an array of evanescently-coupled optical waveguides. The tunneling between adjacent waveguides is tuned by adjusting the width of the barrier between them, and the imaginary part of the local refractive index provides the loss or gain in the respective waveguide. Calculating the time evolution of a wave packet on a lattice is relatively straightforward in the tight-binding model, allowing us to make predictions about the behavior of light propagating down an array of PT -symmetric waveguides.
In this thesis, I investigate the the strength of the PT -symmetric phase (the region over which the eigenvalues are purely real) in lattices with a variety of PT - symmetric potentials. In Chapter 1, I begin with a brief review of the postulates of quantum mechanics, followed by an outline of the fundamental principles of PT - symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a pair of PT -symmetric impurities in the case of open boundary conditions. I find that the PT phase is algebraically fragile except in the case of closest impurities, where the PT phase remains nonzero. In Chapter 3, I examine the case of periodic boundary conditions in uniform lattices, finding that the PT phase is not only nonzero, but also independent of the impurity spacing on the lattice. In addition, I explore the time evolution of a single-particle wave packet initially localized at a site. I find that in the case of periodic boundary conditions, the wave packet undergoes a preferential clockwise or counterclockwise motion around the ring. This behavior is quantified by a discrete momentum operator which assumes a maximum value at the PT -symmetry- breaking threshold.
In Chapter 4, I investigate nonuniform lattices where the parity-symmetric hop- ping between neighboring sites can be tuned. I find that the PT phase remains strong in the case of closest impurities and fragile elsewhere. Chapter 5 explores the effects of the competition between localized and extended PT potentials on a lattice. I show that when the short-range impurities are maximally separated on the lattice, the PT phase is strengthened by adding short-range loss in the broad-loss region. Consequently, I predict that a broken PT symmetry can be restored by increasing the strength of the short-range impurities. Lastly, Chapter 6 summarizes my salient results and discusses areas which can be further developed in future research.
|
224 |
Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphesCattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
|
225 |
Automorphismes des variétés de Kummer généralisées / Automorphisms of generalized Kummer varietiesTari, Kévin 08 December 2015 (has links)
Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert. / Ln this work, we classify non-symplectic automorphisms of varieties deformation equivalent to 4-dimensional generalized Kummer varieties, having a prime order action on the Beauville-Bogomolov lattice. Firstly, we give the fixed loci of natural automorphisms of this kind. Thereafter, we develop tools on lattices, in order to apply them to our varieties. A lattice-theoritic study of 2-dimensional complex tori allows a better understanding of natural automorphisms of Kummer-type varieties. Finaly, we classify all the automorphisms described above on thos varieties. As an application of our results on lattices, we complete also the classification of prime order automorphisms on varieties deformation-equivalent to Hilbert schemes of 2 points on K3 surfaces, solving the case of order 5 which was still open.
|
Page generated in 0.0629 seconds