221 |
Concept Approximations: Approximative Notions for Concept LatticesMeschke, Christian 13 April 2012 (has links)
In this thesis, we present a lattice theoretical approach to the field of approximations. Given a pair consisting of a kernel system and a closure system on an underlying lattice, one receives a lattice of approximations. We describe the theory of these lattices of approximations. Furthermore, we put a special focus on the case of concept lattices. As it turns out, approximation of formal concepts can be interpreted as traces, which are preconcepts in a subcontext.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography / In der vorliegenden Arbeit beschreiben wir einen verbandstheoretischen Zugang zum Thema Approximieren. Ausgehend von einem Kern- und einem Hüllensystem auf einem vollständigen Verband erhält man einen Approximationsverband. Wir beschreiben die Theorie dieser Approximationsverbände. Des Weiteren liegt dabei ein Hauptaugenmerk auf dem Fall zugrundeliegender Begriffsverbände. Wie sich nämlich herausstellt, lassen sich Approximationen formaler Begriffe als Spuren auffassen, welche diese in einem vorgegebenen Teilkontext hinterlassen.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography
|
222 |
An investigation of parity and time-reversal symmetry breaking in tight-binding latticesScott, Derek Douglas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / More than a decade ago, it was shown that non-Hermitian Hamiltonians with combined parity (P) and time-reversal (T ) symmetry exhibit real eigenvalues over a range of parameters. Since then, the field of PT symmetry has seen rapid progress on both the theoretical and experimental fronts. These effective Hamiltonians are excellent candidates for describing open quantum systems with balanced gain and loss. Nature seems to be replete with examples of PT -symmetric systems; in fact, recent experimental investigations have observed the effects of PT symmetry breaking in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and coupled electrical circuits.
Recently, PT -symmetric Hamiltonians for tight-binding lattice models have been extensively investigated. Lattice models, in general, have been widely used in physics due to their analytical and numerical tractability. Perhaps one of the best systems for experimentally observing the effects of PT symmetry breaking in a one-dimensional lattice with tunable hopping is an array of evanescently-coupled optical waveguides. The tunneling between adjacent waveguides is tuned by adjusting the width of the barrier between them, and the imaginary part of the local refractive index provides the loss or gain in the respective waveguide. Calculating the time evolution of a wave packet on a lattice is relatively straightforward in the tight-binding model, allowing us to make predictions about the behavior of light propagating down an array of PT -symmetric waveguides.
In this thesis, I investigate the the strength of the PT -symmetric phase (the region over which the eigenvalues are purely real) in lattices with a variety of PT - symmetric potentials. In Chapter 1, I begin with a brief review of the postulates of quantum mechanics, followed by an outline of the fundamental principles of PT - symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a pair of PT -symmetric impurities in the case of open boundary conditions. I find that the PT phase is algebraically fragile except in the case of closest impurities, where the PT phase remains nonzero. In Chapter 3, I examine the case of periodic boundary conditions in uniform lattices, finding that the PT phase is not only nonzero, but also independent of the impurity spacing on the lattice. In addition, I explore the time evolution of a single-particle wave packet initially localized at a site. I find that in the case of periodic boundary conditions, the wave packet undergoes a preferential clockwise or counterclockwise motion around the ring. This behavior is quantified by a discrete momentum operator which assumes a maximum value at the PT -symmetry- breaking threshold.
In Chapter 4, I investigate nonuniform lattices where the parity-symmetric hop- ping between neighboring sites can be tuned. I find that the PT phase remains strong in the case of closest impurities and fragile elsewhere. Chapter 5 explores the effects of the competition between localized and extended PT potentials on a lattice. I show that when the short-range impurities are maximally separated on the lattice, the PT phase is strengthened by adding short-range loss in the broad-loss region. Consequently, I predict that a broken PT symmetry can be restored by increasing the strength of the short-range impurities. Lastly, Chapter 6 summarizes my salient results and discusses areas which can be further developed in future research.
|
223 |
Wonderful renormalizationBerghoff, Marko 11 March 2015 (has links)
Die sogenannten wunderbaren Modelle für Teilraumanordnungen, eingeführt von DeConcini und Procesi, basierend auf den Techniken der Fulton und MacPherson''schen Kompaktifzierung von Konfigurationsräumen, ermöglichen es, eine Fortsetzung von Feynmandistributionen auf die ihnen zugeordneten divergenten Teilräume in kanonischer Weise zu definieren. Dies wurde in der Dissertation von Christoph Bergbauer ausgearbeitet und diese Arbeit führt die dort präsentierten Ideen weiter aus. Im Unterschied formulieren wir die zentralen Begriffe nicht in geometrischer Sprache, sondern mit Hilfe der partiell geordneten Menge der divergenten Subgraphen eines Feynmangraphen. Dieser Ansatz ist inspiriert durch Feichtners Formulierung der wunderbaren Modellkonstruktion aus kombinatorischer Sicht. Diese Betrachtungsweise vereinfacht die Darstellung deutlich und führt zu einem besseren Verständnis der Fortsetzungs- bzw. Renormierungsoperatoren. Darüber hinaus erlaubt sie das Studium der Renormierungsgruppe, d.h. zu untersuchen, wie sich die renormierten Distributionen unter einem Wechsel des Renormierungspunktes verhalten. Wir zeigen, dass eine sogenannte endliche Renormierung sich darstellen läßt als eine Summe von durch die divergenten Subgraphen bestimmten Distributionen. Dies alles unterstreicht den wohlbekannten Fakt, dass perturbative Renormierung zum größten Teil durch die Kombinatorik von Feynmangraphen bestimmt ist und die analytischen Aspekte nur eine untergeordnete Rolle spielen. / The so-called wonderful models of subspace arrangements, developed in by DeConcini and Procesi, based on Fulton and MacPherson''s seminal paper on a compactification of configuration space, serve as a systematic way to resolve the singularities of Feynman distributions and define in this way canonical renormalization operators. In this thesis we continue the work of Bergbauer where wonderful models were introduced to solve the renormalization problem in position space. In contrast to the exposition there, instead of the subspaces in the arrangement of divergent loci we use the poset of divergent subgraphs of a given Feynman graph as the main tool to describe the wonderful construction and the renormalization operators. This is based on a review article by Feichtner where wonderful models were studied from a purely combinatorial viewpoint. The main motivation for this approach is the fact that both, the renormalization process and the model construction, are governed by the combinatorics of this poset. Not only simplifies this the exposition considerably, but it also allows to study the renormalization operators in more detail. Moreover, we explore the renormalization group in this setting, i.e. we study how the renormalized distributions change if one varies the renormalization points. We show that a so-called finite renormalization is expressed as a sum of distributions determined by divergent subgraphs. The bottom line is that - as is well known, at the latest since the discovery of a Hopf algebra structure underlying renormalization - the whole process of perturbative renormalization is governed by the combinatorics of Feynman graphs while the calculus involved plays only a supporting role.
|
224 |
Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphesCattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
|
225 |
Automorphismes des variétés de Kummer généralisées / Automorphisms of generalized Kummer varietiesTari, Kévin 08 December 2015 (has links)
Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert. / Ln this work, we classify non-symplectic automorphisms of varieties deformation equivalent to 4-dimensional generalized Kummer varieties, having a prime order action on the Beauville-Bogomolov lattice. Firstly, we give the fixed loci of natural automorphisms of this kind. Thereafter, we develop tools on lattices, in order to apply them to our varieties. A lattice-theoritic study of 2-dimensional complex tori allows a better understanding of natural automorphisms of Kummer-type varieties. Finaly, we classify all the automorphisms described above on thos varieties. As an application of our results on lattices, we complete also the classification of prime order automorphisms on varieties deformation-equivalent to Hilbert schemes of 2 points on K3 surfaces, solving the case of order 5 which was still open.
|
Page generated in 0.0586 seconds