• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A temporal, spatial and quantitative study on the influenza A virus transcription, translation and virus-host interaction

Kummer, Susann 09 September 2011 (has links)
Die Vermehrung des Influenza A Virus umfasst, neben anderen wichtigen Schritten, die Transkrption der viralen mRNA und die ribosomale Translation der viralen Proteine. Mit großem Aufwand wurde bereits an der Entwicklung von Methoden zur Untersuchung des zeitlichen Verlaufs der Synthese viraler mRNA während des Vermehrungszyklusses in der Wirtszelle geforscht. In der vorliegenden Arbeit wurden sequenzspezifische FIT-PNA-Sonden, welche einen einzelnen, als künstliche fluoreszente Nukleobase dienenden Interkalator tragen, auf die quantitative RT-PCR sowie die Lebendzellmikroskopie angewandt. Die FIT-PNA-Sonden bieten dabei eine hohe Sensitivität und eine enorme Zielspezifität unter nichtstringenten Hybridisierungsbedingungen. Im Speziellen wurden FIT-PNA Sonden mit Sequenzspezifität zur mRNA der Neuraminidase und des Matrixproteins 1 entworfen und untersucht. Die somit erhaltenen Ergebnisse besitzen eine hohe biologische Relevanz und weisen diese Sonden als vielversprechende Methodik in der Virologie und der Zellbiologie aus. Ihre Anwendung konnte bereits auf das Vesikular Stomatitis Virus ausgeweitet werden. Die Kombination aus biologischer Expertise mit modernen Proteomstudien und detaillierten statistischen Analysen ermöglichte einen systemumfassenden Blick auf die durch eine Infektion bedingten Auswirkungen auf die Wirtszelle. Die Markierung von Aminosäuren mit stabilen Isotopen in Zellkultur wurde hierfür benutzt. Es wurden Proben zu verschiedene Zeitpunkten im Infektionszyklus in die Untersuchungen einbezogen, um zeitaufgelöste Detailstudien der zellulären Proteinbiosynthese und Degradation durchzuführen. / Replication of the influenza A virus involves, amongst other critical steps, the transcription of viral mRNA and ribosomal translation of viral proteins. Significant efforts have been devoted to the development of methods that allow the investigation of viral mRNA progression during the replication cycle inside the host cell. In the present thesis sequence specific FIT-PNA probes which contain a single intercalator serving as artificial fluorescent nucleobase were introduced for quantitative RT-PCR and live cell imaging. FIT-PNAs provide for both high sensitivity and high target specificity at nonstringent hybridisation conditions (where both matched and mismatched probetarget complexes coexist). In particular, FIT-PNAs specific to the neuraminidase and matrix protein 1 were successfully designed and examined. The obtained results are of high biological importance and suggest the FIT-PNA technique as promising tool in the field of virology and cell biology as this approach was readily applied to Vesicular Stomatitis Virus as well. By combining biological expertise with modern high throughput quantitative proteomics and detailed statistical analysis a system wide view of the effects and dynamics of the early H1N1 infection on the cell proteome was generated. Stable isotope labelling of amino acids in cell culture (SILAC) was employed to globally track changes in gene expression at the protein level. Furthermore, samples at various time points post infection enabling a more detailed timeresolved analysis of host cell protein biosynthesis and degradation during the infection cycle were included. As a result the specific expression characteristics of single genes and functional gene subsets in response to viral infection were bioinformatically analysed.
2

Chlamydia infection impairs host cell motility via CPAF-mediated Golgi fragmentation

Heymann, Julia 07 August 2012 (has links)
Chlamydien sind obligat intrazelluläre Bakterien, die sich in einem membranumschlossenen Kompartiment namens Inklusion vermehren. Nach Infektion fragmentiert der Golgi-Apparat der Wirtszelle in kleine Membranstapel. Dies verbessert die Aufnahme von Sphingolipiden und ist deshalb für die chlamydiale Vermehrung essentiell. Die infektionsinduzierte Golgi-Fragmentierung geschieht nach Spaltung des Golgi-Matrix-Proteins Golgin-84. In dieser Arbeit konnte, durch den Vergleich mit bekannten Substraten und Inhibitorstudien, die chlamydiale Protease CPAF (Chlamydia protease-like activity factor) als das Enzym identifiziert werden, das diese Spaltung induziert, abhängig von der Anwesenheit zweier Rab-Proteine, Rab6 und Rab11, die den zellulären Vesikeltransport kontrollieren und zur Inklusion rekrutiert werden. Die Fragmentierung des Golgi-Apparates verhinderte dessen Relokalisierung während der Zellpolarisierung nach Einbringen eines migratorischen Stimulus. Sowohl infizierte als auch Golgin-84-depletierte Zellen migrierten langsamer und randomisiert in einem Motilitätsassay. Die Relokalisierung des Golgi-Apparates konnte durch seine Stabilisierung mittels WEHD oder Rab-Depletion wieder gewonnen werden, was die Zellmotilität teilweise wieder herstellte. Darüber hinaus konnte gezeigt werden, dass die Infektion außer der Golgi-Reorientierung die Signaltransduktion durch GTPasen beeinflusst. Die Aktivität von Cdc42 in infizierten Zellen war erhöht und die Interaktionen mit vielen ihrer Effektoren laut quantitativer Massenspektrometrie stark verändert. Die Ergebnisse dieser Arbeit zeigen, dass CPAF die für Chlamydien lebenswichtige Golgin-84 Prozessierung und Fragmentierung des Golgi-Apparates auslöst. Dies verringert die Mobilität der Wirtszelle, vor allem da der Golgi-Apparat während der Polarisierung nicht mehr ausgerichtet werden kann, des Weiteren durch Modulierung der Protein-Protein-Interaktionen von Cdc42. / Chlamydia are obligate intracellular human pathogens that proliferate inside a membrane-bound compartment called the inclusion. In infected cells, the Golgi apparatus is fragmented into small ministacks that are aligned around the inclusion. This facilitates uptake of host cell sphingolipids and is essential for chlamydial development. Infection-induced Golgi fragmentation happens after processing of the Golgi matrix protein golgin-84. This work could, via comparison with well-known substrates and inhibitor studies, identify the chlamydial protease CPAF (Chlamydia protease-like activity factor) as the enzyme accountable for this cleavage. Golgi Fragmentation depended on two Rab proteins, Rab6 and Rab11, which control vesicle transport and are recruited to the Chlamydia inclusion. As a consequence of Golgi fragmentation, cells lost the capacity to reorient the Golgi apparatus during polarization after a migratory stimulus. Both infected and golgin-84 depleted cells with a permanently fragmented Golgi apparatus displayed decelerated and furthermore randomized migration in a motility assay. Relocalization of the Golgi apparatus could be restored via stabilizing WEHD treatment or Rab depletion which partly rescued cell motility. Moreover, it could be shown that migration signaling via small GTPases was influenced by Chlamydia infection. Infected cells exhibited activation of the small polarity GTPase Cdc42. Numerous interactions with downstream effectors were strongly altered in infected cells according to quantitative mass spectrometry. Particularly, the binding of Cdc42 to migration-associated effectors was decreased. The results of this work show that CPAF, by processing of golgin-84, induces Golgi fragmentation which is vitally important for Chlamydia. This disturbs host cell motility because the Golgi apparatus cannot be reoriented during polarization and, additionally, via the modulation of protein-protein-interactions of Cdc42.

Page generated in 0.0385 seconds