1 |
Comparative Firewall StudyHöfler, Torsten, Burkert, Christian, Telzer, Martin 01 October 2004 (has links) (PDF)
Comparative Analysis of Firewall Systems / Vergleichende Analyse von Firewall Systemen
|
2 |
Quantifizierung des Leistungsparameters Kooperationsqualität im Rahmen eines Ansatzes der wertschöpfungsprozessbezogenen Leistungsanalyse in ProduktionsnetzwerkenJähn, Hendrik, Burghardt, Thomas, Fischer, Marco 23 April 2014 (has links) (PDF)
No description available.
|
3 |
Quantifizierung des Leistungsparameters Kooperationsqualität im Rahmen eines Ansatzes der wertschöpfungsprozessbezogenen Leistungsanalyse in Produktionsnetzwerken: Quantifizierung des Leistungsparameters Kooperationsqualität im Rahmen eines Ansatzes der wertschöpfungsprozessbezogenen Leistungsanalyse in ProduktionsnetzwerkenJähn, Hendrik, Burghardt, Thomas, Fischer, Marco January 2007 (has links)
No description available.
|
4 |
Comparative Firewall StudyHöfler, Torsten, Burkert, Christian, Telzer, Martin 01 October 2004 (has links)
Comparative Analysis of Firewall Systems / Vergleichende Analyse von Firewall Systemen
|
5 |
Holistic Performance Analysis of Multi-layer I/O in Parallel Scientific ApplicationsTschüter, Ronny 18 February 2021 (has links)
Efficient usage of file systems poses a major challenge for highly scalable parallel applications. The performance of even the most sophisticated I/O subsystems lags behind the compute capabilities of current processors. To improve the utilization of I/O subsystems, several libraries, such as HDF5, facilitate the implementation of parallel I/O operations. These libraries abstract from low-level I/O interfaces (for instance, POSIX I/O) and may internally interact with additional I/O libraries. While improving usability, I/O libraries also add complexity and impede the analysis and optimization of application I/O performance.
This thesis proposes a methodology to investigate application I/O behavior in detail. In contrast to existing approaches, this methodology captures I/O activities on multiple layers of the I/O software stack, correlates these activities across all layers explicitly, and identifies interactions between multiple layers of the I/O software stack. This allows users to identify inefficiencies at individual layers of the I/O software stack as well as to detect possible conflicts in the interplay between these layers. Therefor, a monitoring infrastructure observes an application and records information about I/O activities of the application during its execution. This work describes options to monitor applications and generate event logs reflecting their behavior. Additionally, it introduces concepts to store information about I/O activities in event logs that preserve hierarchical relations between I/O operations across all layers of the I/O
software stack.
In combination with the introduced methodology for multi-layer I/O performance analysis, this work provides the foundation for application I/O tuning by exposing patterns in the usage of I/O routines. This contribution includes the definition of I/O access patterns observable in the event logs of parallel scientific applications. These access patterns originate either directly from the application or from utilized I/O libraries. The introduced patterns reflect inefficiencies in the usage of I/O routines or reveal optimization strategies for I/O accesses. Software developers can use these patterns as a guideline for performance analysis to investigate the I/O behavior of their applications and verify the effectiveness of internal optimizations applied by high-level I/O libraries.
After focusing on the analysis of individual applications, this work widens the scope to investigations of coordinated sequences of applications by introducing a top-down approach for performance analysis of entire scientific workflows. The approach provides summarized performance metrics covering different workflow perspectives, from general overview to individual jobs and their job steps. These summaries allow users to identify inefficiencies and determine the responsible job steps. In addition, the approach utilizes the methodology for performance analysis of applications using multi-layer I/O to record detailed performance data about job steps, enabling a fine-grained analysis of the associated execution to exactly pinpoint performance issues. The introduced top-down performance analysis methodology presents a powerful tool for comprehensive performance analysis of complex workflows.
On top of their theoretical formulation, this thesis provides implementations of all proposed methodologies. For this purpose, an established performance monitoring infrastructure is enhanced by features to record I/O activities. These contributions complement existing functionality and provide a holistic performance analysis for parallel scientific applications covering computation, communication, and I/O operations. Evaluations with synthetic case studies, benchmarks, and real-world applications demonstrate the effectiveness of the proposed methodologies. The results of this work are distributed as open-source software. For instance, the measurement infrastructure including improvements introduced in this thesis is available for download and used in computing centers world-wide. Furthermore, research projects already employ the outcomes of this work.
|
6 |
Performance Analysis of Complex Shared Memory SystemsMolka, Daniel 22 March 2017 (has links) (PDF)
Systems for high performance computing are getting increasingly complex. On the one hand, the number of processors is increasing. On the other hand, the individual processors are getting more and more powerful. In recent years, the latter is to a large extent achieved by increasing the number of cores per processor. Unfortunately, scientific applications often fail to fully utilize the available computational performance. Therefore, performance analysis tools that help to localize and fix performance problems are indispensable. Large scale systems for high performance computing typically consist of multiple compute nodes that are connected via network. Performance analysis tools that analyze performance problems that arise from using multiple nodes are readily available. However, the increasing number of cores per processor that can be observed within the last decade represents a major change in the node architecture. Therefore, this work concentrates on the analysis of the node performance.
The goal of this thesis is to improve the understanding of the achieved application performance on existing hardware. It can be observed that the scaling of parallel applications on multi-core processors differs significantly from the scaling on multiple processors. Therefore, the properties of shared resources in contemporary multi-core processors as well as remote accesses in multi-processor systems are investigated and their respective impact on the application performance is analyzed. As a first step, a comprehensive suite of highly optimized micro-benchmarks is developed. These benchmarks are able to determine the performance of memory accesses depending on the location and coherence state of the data. They are used to perform an in-depth analysis of the characteristics of memory accesses in contemporary multi-processor systems, which identifies potential bottlenecks. However, in order to localize performance problems, it also has to be determined to which extend the application performance is limited by certain resources.
Therefore, a methodology to derive metrics for the utilization of individual components in the memory hierarchy as well as waiting times caused by memory accesses is developed in the second step. The approach is based on hardware performance counters, which record the number of certain hardware events. The developed micro-benchmarks are used to selectively stress individual components, which can be used to identify the events that provide a reasonable assessment for the utilization of the respective component and the amount of time that is spent waiting for memory accesses to complete. Finally, the knowledge gained from this process is used to implement a visualization of memory related performance issues in existing performance analysis tools.
The results of the micro-benchmarks reveal that the increasing number of cores per processor and the usage of multiple processors per node leads to complex systems with vastly different performance characteristics of memory accesses depending on the location of the accessed data. Furthermore, it can be observed that the aggregated throughput of shared resources in multi-core processors does not necessarily scale linearly with the number of cores that access them concurrently, which limits the scalability of parallel applications. It is shown that the proposed methodology for the identification of meaningful hardware performance counters yields useful metrics for the localization of memory related performance limitations.
|
7 |
Nodale Spektralelemente und unstrukturierte Gitter - Methodische Aspekte und effiziente AlgorithmenFladrich, Uwe 23 October 2012 (has links) (PDF)
Die Dissertation behandelt methodische und algorithmische Aspekte der Spektralelementemethode zur räumlichen Diskretisierung partieller Differentialgleichungen. Die Weiterentwicklung einer symmetriebasierten Faktorisierung ermöglicht effiziente Operatoren für Tetraederelemente. Auf Grundlage einer umfassenden Leistungsanalyse werden Engpässe in der Implementierung der Operatoren identifiziert und durch algorithmische Modifikationen der Methode eliminiert.
|
8 |
Trace-based Performance Analysis for Hardware Accelerators / Leistungsanalyse hardwarebeschleunigter Anwendungen mittels ProgrammspurenJuckeland, Guido 14 February 2013 (has links) (PDF)
This thesis presents how performance data from hardware accelerators can be included in event logs. It extends the capabilities of trace-based performance analysis to also monitor and record data from this novel parallelization layer. The increasing awareness to power consumption of computing devices has led to an interest in hybrid computing architectures as well.
High-end computers, workstations, and mobile devices start to employ hardware accelerators to offload computationally intense and parallel tasks, while at the same time retaining a highly efficient scalar compute unit for non-parallel tasks. This execution pattern is typically asynchronous so that the scalar unit can resume other work while the hardware accelerator is busy. Performance analysis tools provided by the hardware accelerator vendors cover the situation of one host using one device very well.
Yet, they do not address the needs of the high performance computing community. This thesis investigates ways to extend existing methods for recording events from highly parallel applications to also cover scenarios in which hardware accelerators aid these applications. After introducing a generic approach that is suitable for any API based acceleration paradigm, the thesis derives a suggestion for a generic performance API for hardware accelerators and its implementation with NVIDIA CUPTI. In a next step the visualization of event logs containing data from execution streams on different levels of parallelism is discussed. In order to overcome the limitations of classic performance profiles and timeline displays, a graph-based visualization using Parallel Performance Flow Graphs (PPFGs) is introduced. This novel technical approach is using program states in order to display similarities and differences between the potentially very large number of event streams and, thus, enables a fast way to spot load imbalances. The thesis concludes with the in-depth analysis of a case-study of PIConGPU---a highly parallel, multi-hybrid plasma physics simulation---that benefited greatly from the developed performance analysis methods. / Diese Dissertation zeigt, wie der Ablauf von Anwendungsteilen, die auf Hardwarebeschleuniger ausgelagert wurden, als Programmspur mit aufgezeichnet werden kann. Damit wird die bekannte Technik der Leistungsanalyse von Anwendungen mittels Programmspuren so erweitert, dass auch diese neue Parallelitätsebene mit erfasst wird. Die Beschränkungen von Computersystemen bezüglich der elektrischen Leistungsaufnahme hat zu einer steigenden Anzahl von hybriden Computerarchitekturen geführt.
Sowohl Hochleistungsrechner, aber auch Arbeitsplatzcomputer und mobile Endgeräte nutzen heute Hardwarebeschleuniger um rechenintensive, parallele Programmteile auszulagern und so den skalaren Hauptprozessor zu entlasten und nur für nicht parallele Programmteile zu verwenden. Dieses Ausführungsschema ist typischerweise asynchron: der Skalarprozessor kann, während der Hardwarebeschleuniger rechnet, selbst weiterarbeiten.
Die Leistungsanalyse-Werkzeuge der Hersteller von Hardwarebeschleunigern decken den Standardfall (ein Host-System mit einem Hardwarebeschleuniger) sehr gut ab, scheitern aber an einer Unterstützung von hochparallelen Rechnersystemen. Die vorliegende Dissertation untersucht, in wie weit auch multi-hybride Anwendungen die Aktivität von Hardwarebeschleunigern aufzeichnen können. Dazu wird die vorhandene Methode zur Erzeugung von Programmspuren für hochparallele Anwendungen entsprechend erweitert. In dieser Untersuchung wird zuerst eine allgemeine Methodik entwickelt, mit der sich für jede API-gestützte Hardwarebeschleunigung eine Programmspur erstellen lässt. Darauf aufbauend wird eine eigene Programmierschnittstelle entwickelt, die es ermöglicht weitere leistungsrelevante Daten aufzuzeichnen. Die Umsetzung dieser Schnittstelle wird am Beispiel von NVIDIA CUPTI darstellt. Ein weiterer Teil der Arbeit beschäftigt sich mit der Darstellung von Programmspuren, welche Aufzeichnungen von den unterschiedlichen Parallelitätsebenen enthalten. Um die Einschränkungen klassischer Leistungsprofile oder Zeitachsendarstellungen zu überwinden, wird mit den parallelen Programmablaufgraphen (PPFGs) eine neue graphenbasisierte Darstellungsform eingeführt.
Dieser neuartige Ansatz zeigt eine Programmspur als eine Folge von Programmzuständen mit gemeinsamen und unterchiedlichen Abläufen. So können divergierendes Programmverhalten und Lastimbalancen deutlich einfacher lokalisiert werden. Die Arbeit schließt mit der detaillierten Analyse von PIConGPU -- einer multi-hybriden Simulation aus der Plasmaphysik --, die in großem Maße von den in dieser Arbeit entwickelten Analysemöglichkeiten profiert hat.
|
9 |
Grundlagen für die Entwicklung eines Ansatzes der wertschöpfungsprozessbezogenen Leistungsanalyse in kompetenzzellenbasierten ProduktionsnetzwerkenJähn, Hendrik 23 April 2014 (has links) (PDF)
No description available.
|
10 |
Möglichkeiten der Leistungsanalyse und Gewinnverteilung in auftragsspezifisch konfigurierten ProduktionsnetzwerkenJähn, Hendrik 30 April 2014 (has links) (PDF)
No description available.
|
Page generated in 0.0848 seconds