Spelling suggestions: "subject:"les,"" "subject:"less,""
31 |
Epithelial-mesenchymal transition in the anterior segment of the eyeChandler, Heather Lynn 12 September 2006 (has links)
No description available.
|
32 |
The spherical aberration of the crystalline lens of the human eyeCox, Michael J., Calver, Richard, Garner, L.F., Smith, G. January 2001 (has links)
No
|
33 |
A Fully Customizable Anatomically Correct Model of the Crystalline LensWilson, Cynthia Nicole 04 August 2011 (has links)
The human eye is a complex optical system comprised of many components. The crystalline lens, an optical component with a gradient index (GRIN), is perhaps the least understood as it is situated inside the eye and as a result is difficult to characterize. Its complex nonlinear structure is not easily measured and consequently not easily modeled. Presently several models of the GRIN structure exist describing the average performance of crystalline lenses. These models, however, do not accurately describe the performance of crystalline lenses on an individual basis and a more accurate individual eye model based on anatomical parameters is needed. This thesis proposes an anatomically correct, individually customizable crystalline lens model. This is an important tool and is needed both for research on the optical properties of human eyes and to diagnose and plan the treatment of optically based visual problems, such as refractive surgery planning. The lens model consisted of an interior GRIN with a constant refractive index core. The anterior and posterior surface was described by conic sections. To realize this eye model, the optical and biometric properties of mammalian lenses were measured and the correlation relationships between these measurements were used to simplify the model down to one fitting parameter which controls the shape of the GRIN. Using this data, an anatomically correct individualizable model of the lens was successfully realized with varying parameters unique to each lens. Using this customizable lens model, customizable human eye models based on measurements of the entire human eye can be realized.
|
34 |
A Fully Customizable Anatomically Correct Model of the Crystalline LensWilson, Cynthia Nicole 04 August 2011 (has links)
The human eye is a complex optical system comprised of many components. The crystalline lens, an optical component with a gradient index (GRIN), is perhaps the least understood as it is situated inside the eye and as a result is difficult to characterize. Its complex nonlinear structure is not easily measured and consequently not easily modeled. Presently several models of the GRIN structure exist describing the average performance of crystalline lenses. These models, however, do not accurately describe the performance of crystalline lenses on an individual basis and a more accurate individual eye model based on anatomical parameters is needed. This thesis proposes an anatomically correct, individually customizable crystalline lens model. This is an important tool and is needed both for research on the optical properties of human eyes and to diagnose and plan the treatment of optically based visual problems, such as refractive surgery planning. The lens model consisted of an interior GRIN with a constant refractive index core. The anterior and posterior surface was described by conic sections. To realize this eye model, the optical and biometric properties of mammalian lenses were measured and the correlation relationships between these measurements were used to simplify the model down to one fitting parameter which controls the shape of the GRIN. Using this data, an anatomically correct individualizable model of the lens was successfully realized with varying parameters unique to each lens. Using this customizable lens model, customizable human eye models based on measurements of the entire human eye can be realized.
|
35 |
A Fully Customizable Anatomically Correct Model of the Crystalline LensWilson, Cynthia Nicole 04 August 2011 (has links)
The human eye is a complex optical system comprised of many components. The crystalline lens, an optical component with a gradient index (GRIN), is perhaps the least understood as it is situated inside the eye and as a result is difficult to characterize. Its complex nonlinear structure is not easily measured and consequently not easily modeled. Presently several models of the GRIN structure exist describing the average performance of crystalline lenses. These models, however, do not accurately describe the performance of crystalline lenses on an individual basis and a more accurate individual eye model based on anatomical parameters is needed. This thesis proposes an anatomically correct, individually customizable crystalline lens model. This is an important tool and is needed both for research on the optical properties of human eyes and to diagnose and plan the treatment of optically based visual problems, such as refractive surgery planning. The lens model consisted of an interior GRIN with a constant refractive index core. The anterior and posterior surface was described by conic sections. To realize this eye model, the optical and biometric properties of mammalian lenses were measured and the correlation relationships between these measurements were used to simplify the model down to one fitting parameter which controls the shape of the GRIN. Using this data, an anatomically correct individualizable model of the lens was successfully realized with varying parameters unique to each lens. Using this customizable lens model, customizable human eye models based on measurements of the entire human eye can be realized.
|
36 |
A Fully Customizable Anatomically Correct Model of the Crystalline LensWilson, Cynthia Nicole January 2011 (has links)
The human eye is a complex optical system comprised of many components. The crystalline lens, an optical component with a gradient index (GRIN), is perhaps the least understood as it is situated inside the eye and as a result is difficult to characterize. Its complex nonlinear structure is not easily measured and consequently not easily modeled. Presently several models of the GRIN structure exist describing the average performance of crystalline lenses. These models, however, do not accurately describe the performance of crystalline lenses on an individual basis and a more accurate individual eye model based on anatomical parameters is needed. This thesis proposes an anatomically correct, individually customizable crystalline lens model. This is an important tool and is needed both for research on the optical properties of human eyes and to diagnose and plan the treatment of optically based visual problems, such as refractive surgery planning. The lens model consisted of an interior GRIN with a constant refractive index core. The anterior and posterior surface was described by conic sections. To realize this eye model, the optical and biometric properties of mammalian lenses were measured and the correlation relationships between these measurements were used to simplify the model down to one fitting parameter which controls the shape of the GRIN. Using this data, an anatomically correct individualizable model of the lens was successfully realized with varying parameters unique to each lens. Using this customizable lens model, customizable human eye models based on measurements of the entire human eye can be realized.
|
37 |
FLAT LIQUID CRYSTAL DIFFRACTIVE LENSES WITH VARIABLE FOCUS AND MAGNIFICATIONValley, Pouria January 2010 (has links)
Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2πzone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm²/2mλ, where r(m) is mth zone radius, and λ is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (±2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).
|
38 |
Investigation of Accommodation and Presbyopia using Ultrasound Imaging during Ex Vivo Simulated AccommodationUrs, Raksha 22 January 2010 (has links)
The goal of this project is to obtain quantitative images of the lens and the ciliary body to validate EVAS-II (Second generation Ex Vivo Accommodation Simulator). To accomplish this goal it was necessary to develop methods, instrumentation and image processing techniques to acquire 3D images in EVAS-II, using UBM (Ultrasound Bio Microscope), and to apply these techniques to non-human primate eyes. The lens studies included measurement of speed of sound in the lens to reconstruct accurate images of the lens, development of instrumentation to measure the un-distorted lens shape and development of a mathematical model to quantify the whole lens shape. Speed measurements showed that the speed of sound exhibits a gradient profile in the equatorial plane, similar to refractive index and protein distributions in the lens. Lens shape measurements showed that the UBM can be used to accurately measure thickness, diameter, cross-sectional area, volume and surface area of the lens. The ciliary body studies included development of instrumentation and algorithms to obtain 3-D images of tissue in EVAS-II and development of methodology to quantify ciliary body movement during stretching. Studies showed that the accommodation process in young baboon eyes in EVAS-II is comparable to the in vivo process in rhesus monkeys. The UBM can be used to obtain reliable quantitative information about the lens and the ciliary body. 3-D UBM enables monitoring of ciliary body motion of the entire accommodative apparatus.
|
39 |
Fresnel liquid crystal lens with voltage modulationLin, Jia-Huei 20 July 2007 (has links)
We fabricated the liquid crystal cell which had the property of the diffraction optical element. The concentric electrode had been fabricated on an indium-tin-oxide (ITO) substrate by etching technology. With the application of a proper voltage, it produces an inhomogeneous grating-like electric field in space to form phase Fresnel liquid crystal lens.
Because of liquid crystals (LCs) are excellent electro-optic materials with electrical and optical anisotropies. Their optical properties can easily be modulated by the external electric field. Hence based on the electro-optic properties, the function of the as-constructed phase Fresnel liquid crystal lens has been studied in this paper.
In this study, we discuss the diffraction efficiency of Fresnel LC lenses and collocated plano-convex to form dual focal length optical element.
|
40 |
Defining Ray Sets for the Analysis of Lenslet-Based Optical Systems Including Plenoptic Cameras and Shack-Hartmann Wavefront SensorsMoore, Lori Briggs January 2014 (has links)
Plenoptic cameras and Shack-Hartmann wavefront sensors are lenslet-based optical systems that do not form a conventional image. The addition of a lens array into these systems allows for the aberrations generated by the combination of the object and the optical components located prior to the lens array to be measured or corrected with post-processing. This dissertation provides a ray selection method to determine the rays that pass through each lenslet in a lenslet-based system. This first-order, ray trace method is developed for any lenslet-based system with a well-defined fore optic, where in this dissertation the fore optic is all of the optical components located prior to the lens array. For example, in a plenoptic camera the fore optic is a standard camera lens. Because a lens array at any location after the exit pupil of the fore optic is considered in this analysis, it is applicable to both plenoptic cameras and Shack-Hartmann wavefront sensors. Only a generic, unaberrated fore optic is considered, but this dissertation establishes a framework for considering the effect of an aberrated fore optic in lenslet-based systems. The rays from the fore optic that pass through a lenslet placed at any location after the fore optic are determined. This collection of rays is reduced to three rays that describe the entire lenslet ray set. The lenslet ray set is determined at the object, image, and pupil planes of the fore optic. The consideration of the apertures that define the lenslet ray set for an on-axis lenslet leads to three classes of lenslet-based systems. Vignetting of the lenslet rays is considered for off-axis lenslets. Finally, the lenslet ray set is normalized into terms similar to the field and aperture vector used to describe the aberrated wavefront of the fore optic. The analysis in this dissertation is complementary to other first-order models that have been developed for a specific plenoptic camera layout or Shack-Hartmann wavefront sensor application. This general analysis determines the location where the rays of each lenslet pass through the fore optic establishing a framework to consider the effect of an aberrated fore optic in a future analysis.
|
Page generated in 0.0284 seconds