51 |
Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension systemMichail, Konstantinos January 2009 (has links)
New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks.
|
52 |
Estudo da força de radiação acústica em partículas produzida por ondas progressivas e estacionárias. / Acoustic radiation force on particles produced by progressive and standing waves.Andrade, Marco Aurélio Brizzotti 28 January 2010 (has links)
O objetivo deste trabalho é estudar o fenômeno da força de radiação acústica produzida por ondas progressivas e estacionárias. Neste trabalho o estudo da força produzida por ondas estacionárias é aplicado na análise de um levitador acústico e o estudo da força de radiação acústica por ondas progressivas é feito visando a futura construção de um separador acústico. Neste trabalho é utilizado o método dos elementos finitos para simular o comportamento de um levitador acústico. Primeiramente, é feita a simulação de um levitador acústico que consiste de um transdutor de Langevin com uma face de emissão plana que opera na freqüência de aproximadamente 20 kHz e um refletor plano. O método dos elementos finitos é utilizado para determinar o deslocamento da face do transdutor e o potencial acústico que atua numa esfera pequena. O deslocamento da face do transdutor obtido numericamente é comparado com o medido experimentalmente por um vibrômetro de fibra ótica e o potencial acústico determinado pelo método dos elementos é verificado experimentalmente colocando pequenas esferas de isopor no levitador. Depois de verificar o modelo numérico, o método dos elementos finitos é utilizado na otimização de um levitador acústico composto de um refletor côncavo e um transdutor com face de emissão côncava. Os resultados numéricos mostram que a força de radiação acústica no novo levitador é aumentada em 604 vezes quando comparada com o levitador composto de um transdutor com face plana e refletor plano. Este trabalho também apresenta um modelo numérico para determinar a trajetória de partículas esféricas na presença de uma onda de ultra-som progressiva. O modelo assume que as seguintes forças atuam na partícula: gravidade, empuxo, forças viscosas e força de radiação acústica devido a uma onda progressiva. Com o objetivo de não restringir o tamanho das partículas que podem ser utilizadas no modelo é empregada uma equação empírica do coeficiente de arrasto, válida para uma grande faixa de número de Reynolds. O modelo proposto requer a distribuição de pressão gerada pelo transdutor de ultra-som. A distribuição de pressão é medida experimentalmente utilizando um hidrofone calibrado. A verificação do modelo é feita soltando-se pequenas esferas de vidro (com diâmetros da ordem de 500 m) em frente a um transdutor de ultra-som de 1 MHz e 35 mm de diâmetro. / The objective of this work is to study the acoustic radiation force produced by progressive and standing waves. In this work, the studies related to the acoustic radiation force generated by ultrasonic standing waves are applied in the analysis of an acoustic levitator and the studies involving the acoustic radiation force generated by progressive waves are conducted aiming the design of acoustic separators. In this work, the finite element method is used to simulate an acoustic levitator. First, an acoustic levitator consisting of a 20 kHz Langevin ultrasonic transducer with a plane radiating surface and a plane reflector is simulated by the finite element method. The finite element method is used to determine the transducer face displacement and the acoustic radiation potential that acts on a small sphere. The numerical displacement is compared with that obtained by a fiber-optic vibration sensor and the acoustic radiation potential determined by the finite element method is verified experimentally by placing small Styrofoam spheres in the levitator. After verifying the numerical method, the finite element method was used to optimize an acoustic levitator consisting of a concave-faced transducer and a curved reflector. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. This work also presents a numerical model to determine the trajectory of sphere particles when submitted to ultrasonic progressive waves. This model assumes that the following forces act on the particle: gravity, buoyancy, viscous forces and acoustic radiation force due to the progressive wave. In order not to restrict the model to a small particle size range, the viscous forces that act on the sphere are modeled by an empirical relationship of drag coefficient that is valid for a wide range of Reynolds numbers. The numerical model requires the pressure field radiated by the ultrasonic transducer. The pressure field is obtained experimentally by using a calibrated needle hydrophone. The numerical model validation is done by dropping small glass spheres (on the order of 500 m diameter) in front of a 1-MHz 35-mm diameter ultrasonic transducer.
|
53 |
Application of detection filter theory to longitudinal control of guideway vehicles.Gerard, Jean-Pierre Augustin January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Bibliography: leaf 86. / M.S.
|
54 |
Design, construction, and testing of a combined magnetic levitation and propulsion system.Atlas, Michael January 1977 (has links)
Thesis. 1977. B.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / B.S.
|
55 |
A Backstepping Design of a Control System for a Magnetic Levitation System / En Backstepping Design av Reglersystem för MagnetsvävareMahmoud, Nawrous Ibrahim January 2003 (has links)
<p>The subject of this thesis is the design of a control law for a magnetic levitation system, which in this case is the system 33-210. The method used is backstepping technique and specifically adaptive observer backstepping due to parameter uncertainties and lack of access to all the states of the system. The second state of the system, the speed of the steel ball, was estimated by a reduced order observer. The model used gave us the opportunity to estimate a parameter which in the literature is denoted virtual control coefficient. Backstepping method gives us a rather straight forward way to design the controlling unit for a system with these properties. Stabilization of the closed-loop system is achieved by incorporating a Lypapunov function, which were chose a quadratic one in this thesis. If thederivative of this function is rendered negative definite by the control law, then we achieve stability. The results of the design were evaluated in simulations and real-time measurements by testing the tracking performance of the system. The simulation results were very promising and the validations in real-time were satisfying. Note that this has been done in previous studies; the new aspect here is the limitation of the voltage input. The real-time results showed that the parameter estimation converges only locally.</p>
|
56 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
57 |
A Backstepping Design of a Control System for a Magnetic Levitation System / En Backstepping Design av Reglersystem för MagnetsvävareMahmoud, Nawrous Ibrahim January 2003 (has links)
The subject of this thesis is the design of a control law for a magnetic levitation system, which in this case is the system 33-210. The method used is backstepping technique and specifically adaptive observer backstepping due to parameter uncertainties and lack of access to all the states of the system. The second state of the system, the speed of the steel ball, was estimated by a reduced order observer. The model used gave us the opportunity to estimate a parameter which in the literature is denoted virtual control coefficient. Backstepping method gives us a rather straight forward way to design the controlling unit for a system with these properties. Stabilization of the closed-loop system is achieved by incorporating a Lypapunov function, which were chose a quadratic one in this thesis. If thederivative of this function is rendered negative definite by the control law, then we achieve stability. The results of the design were evaluated in simulations and real-time measurements by testing the tracking performance of the system. The simulation results were very promising and the validations in real-time were satisfying. Note that this has been done in previous studies; the new aspect here is the limitation of the voltage input. The real-time results showed that the parameter estimation converges only locally.
|
58 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
59 |
Investigation of Nonwetting System Failure and System IntegrationNagy, Peter Takahiro 20 November 2006 (has links)
A droplet may be prevented from wetting a solid surface by the existence of a lubricating film of air, driven by theromcapillary convection, between liquid and solid surfaces. The noncontact nature and the load-carrying capability of a nonwetting droplet lead to potential engineering applications, e.g., low-friction bearings. The present research consists of two thrusts. The first is aimed at quantifying nonwetting-system failures (film and pinning) triggered by application of a mechanical load, gaining insights to failure mechanisms. Experimental results show that film failure occurs over a wide range of droplet volumes when the temperature difference between the droplet and the plate, the driving potential of the free-surface motion, is small. Interferometric observations reveal flow instability just prior to film failure, with the growth of a nonaxisymmetric disturbance on a free surface (m = 1). Pinning failure becomes more prevalent as the temperature difference is increased, stabilizing the film flow. As part of the present investigation, a system was devised, allowing an oscillating free-surface to be reconstructed from a series of interferograms. The dynamic responses of the free surface reveal mode coupling, with harmonics of the input frequency excited through nonlinearity.
The second thrust of the research succeeded in levitating and translating a droplet using the mechanism of permanent nonwetting. In this scheme, the droplet is heated by a CO2 laser and is placed above a cooled glass surface in order to drive the lubricating film that supports the weight of the drop. Furthermore, the position of the droplet can be controlled by moving the heating location, which leads to an asymmetry of the flow fields, driving air from the cooler-end of the droplet and propelling it towards the heat source. These demonstrations suggest the techniques potential use as a liquid-delivery scheme in a Lab-On-a-Chip system. Modeling is carried out to estimate propulsive forces on the droplet and to explain oscillatory behavior observed when excessive heating is applied on the drop. The concept to sandwich a droplet between two plates, a necessary configuration for levitating smaller droplets (less than mm-scale), is also discussed.
|
60 |
Modeling and Vibration Control with a Nanopositioning Magnetic-Levitation SystemKim, Young Ha 2011 December 1900 (has links)
This dissertation demonstrates that a magnetic-levitation (maglev) stage has the capabilities to control movements and reject vibration simultaneously. The mathematical model and vibration control scheme with a 6-degree-of-freedom (6-DOF) maglev stage for nanoscale positioning are developed for disturbance rejection. The derived full nonlinear dynamic equation of motions (EOMs) of the maglev stage include translational and rotational motions with differential kinematics. The derived EOMs and the magnetic forces are linearized to design a multivariable controller, a Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR), for vibration disturbance rejection in a multi-input multi-output (MIMO) system. For a more accurate model, the dynamics of an optical table with a pneumatic passive isolation system is also considered. The model of the maglev stage with the optical table is validated by experiments. Dual-loop controllers are designed to minimize the influence of the vibration disturbance between the moving platen and the optical table in the x-, y-, and z-axes motions. The inner-loop compensator regulates the velocity to reject vibration disturbance and the outer-loop compensator tracks positioning commands. When the vibration disturbances of 10 to 100 Hz are applied, the vibration-reduction ratios are about 30 to 65 percent in horizontal motion and 20 to 45 percent in vertical motion. In addition, the vibration disturbances of 45.45 Hz are attenuated by about 4 to 40 percent in angular motions. The vibration control schemes are effective in not only translational but rotational motions. In step responses, the vibration control schemes reduce the wandering range in the travel from the origin to another location. Positioning and tracking accuracies with the vibration controller are better than those without the vibration controller. In summary, these dual-loop control schemes with velocity feedback control improved the nanopositioning and vibration/disturbance rejection capabilities of a maglev system.
|
Page generated in 0.0708 seconds