• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da Interação com o DNA e Inibição da Atividade Topoisomerase I de Derivados Tiazacridínicos e Imidazacridínicos

Lafayette, Elizabeth Almeida 31 January 2013 (has links)
Submitted by Ramon Santana (ramon.souza@ufpe.br) on 2015-03-05T12:40:14Z No. of bitstreams: 2 Dissertação Elizabeth definitiva 2013.pdf: 2088443 bytes, checksum: e5072e4e506e5dbf48fdac9e6edd81fc (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-05T12:40:14Z (GMT). No. of bitstreams: 2 Dissertação Elizabeth definitiva 2013.pdf: 2088443 bytes, checksum: e5072e4e506e5dbf48fdac9e6edd81fc (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / FACEPE (Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco) / Muitos agentes terapêuticos essenciais no tratamento de diversas doenças atuam através da sua capacidade de interagir com o DNA. Esta interação pode muitas vezes levar à uma alteração nas propriedades estruturais e funcionais do DNA, o que influencia sobre suas funções fisiológicas e causa apoptose celular. Compostos com uma estrutura aromática policíclica, tais como acridina e seus derivados são conhecidos por interagir com o DNA e apresentar aplicações clínicas importantes, especialmente como antitumoral. Além de, atuarem através da inibição da atividade da enzima topoisomerase, bloqueando processos de replicação e transcrição do DNA, o que causa destruição das células. Dessa forma, este trabalho teve como objetivo a síntese e caracterização de derivados tiazacridínicos e imidazacridínicos para estudo da ligação ao DNA e da inibição da topoisomerase I. Todos os compostos tiveram suas estruturas elucidadas e comprovadas por RMN1H, RMN13C, IV e LC-MS. A análise da ligação ao DNA foi realiza através da espectroscopia de absorção, fluorescência e dicroísmo circular e o estudo da topoisomerase por eletroforese em gel de agarose. Os espectros de Uv-vis, fluorescência e de dicroísmo circular mostraram que os derivados interagem com o DNA tanto por ligação externa quanto por intercalação, apresentando constantes de ligação entre 1.46 – 6.01 x 104 M-1. O ensaio com a topoisomerase I evidenciou que em concentrações a partir de 200 μM, estes compostos apresentam a capacidade de inibir a enzima topoisomerase I humana. Tais resultados permitiram evidenciar um mecanismo de ligação ao DNA com as tiazacridinas e imidazacridinas, refletindo o que é visto na literatura e revelando que, estes derivados, são promissores no desenvolvimento de novos agentes análogos de acridina com potenciais sítios de ligação ao DNA.
2

Síntese, elucidação estrutural, avaliação da interação com DNA, atividades antiproliferativa e anti-topoisomerase de novos derivados de Acridina

ALMEIDA, Sinara Mônica Vitalino de 23 July 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-04-05T17:59:08Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE_SINARA MONICA VITALINO DE ALMEIDA_FINAL UNIFICADO BIBLIOTECA.pdf: 9803056 bytes, checksum: 68bd08234fdac2b45bf400b3ebd62957 (MD5) / Made available in DSpace on 2016-04-05T17:59:08Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE_SINARA MONICA VITALINO DE ALMEIDA_FINAL UNIFICADO BIBLIOTECA.pdf: 9803056 bytes, checksum: 68bd08234fdac2b45bf400b3ebd62957 (MD5) Previous issue date: 2015-07-23 / CAPES, CNPq / O câncer é, sem sombra de dúvidas, a doença mais temida pela população, em razão da sua alta incidência e elevadas taxas de mortalidade para determinados tipos da doença. Nas últimas décadas, os pesquisadores têm obtido avanços significativos no entendimento da patogênese, nas características e nas terapias do câncer. A quimioterapia é frequentemente o tratamento escolhido para muitos tipos de câncer e por este motivo a pesquisa por novos agentes quimioterápicos constitui um dos alicerces na luta contra o câncer. Os intercaladores orgânicos são compostos poliaromáticos que podem se inserir entre pares de bases adjacentes da dupla fita de DNA e inibir a síntese de ácido nucléico in vivo, essa propriedade é comumente observada em drogas anticâncer usadas na terapia clínica. Por isto, a descoberta de novos intercaladores do DNA tem sido considerada uma abordagem prática e um número expressivo de moléculas tem sido avaliado quanto às suas propriedades intercaladoras. Neste trabalho foram sintetizados novos agentes anticâncer tendo como molécula de partida o anel acridina. Foram sintetizados e caracterizados oito novos derivados da série 2-acridin-9-il-metileno-N-fenil-hidrazina-carbotioamida (3a-3h) com diferentes substituintes na porção fenil (não substituídos ou com substituintes elétrondoadores ou elétron-retiradores) e dois novos derivados da série 3-(acridin-9-il)-n-benzilideno-2- cianoacrilohidrazidas (AMTAC-01 e AMTAC-02). Os compostos foram avaliados quanto às suas propriedades intercaladoras ao ctDNA in vitro e atividades antiproliferativas contra linhagens de células tumorais de mama (MCF-7), ovário resistente a múltiplas drogas (NCI-ADR/RES), pulmão (NCI-H460), próstata (PC-3), cólon (HT29), ovário (OVCAR-03), rim (786-0), leucemia (K562) e glioma (U251). Foram investigadas alterações morfológicas induzidas por tratamento de células MCF-7 com o composto mais ativo da série 2-acridin-9-il-metileno-N-fenil-hidrazinacarbotioamida (3a) através de microscopias eletrônicas de transmissão, varredura e da análise de exposição de fosfatidilserina e fragmentação de DNA. Além disso, a atividade de inibição da topoisomerase IIa dos derivados 3-(acridin-9-il)-n-benzilideno-2-cianoacrilohidrazidas foi verificada e a ligação com ctDNA foi estudada por meio de espectroscopia de absorção em fluorescência. Todos os derivados produzidos das duas séries apresentaram interação com o DNA. Após o contato com DNA foram verificados efeitos hipercrômicos e hipocrômicos, bem como mudanças para o vermelho ou azul nos espectros de absorbância. Essas modificações são preditivas de formação de complexo entre DNA e derivado. As constantes de ligação calculadas estão entre 1.74 x 104 e 1.0 x 106 M-1 para os derivados 3a-3h e entre 2.3-2.5 x 106 M-1 para os AMTAC’s. Estes valores indicam alta afinidade pelos pares de base do DNA. Da série 2-acridin- 9-il-metileno-N-fenil-hidrazina-carbotioamida o composto mais eficiente para ligação in vitro com o DNA foi o derivado cloro-substituído (3f), enquanto o composto mais ativo no teste antiproliferativo foi o derivado não substituído na porção tiossemicarbazona (3a). Os valores de concentração letal para 50 % do número inicial de células para o derivado 3a contra as linhagens NCI-H460, MCF-7, U251, NCI-ADR/RES, HT-29 e PC-3 foram 43.41, 60.26, 68.93, 70.2, 70.24 e 72.95 μM, respectivamente. As análises por microscopias eletrônicas de varredura e transmissão de células MCF-7 tratadas com 60 μM do derivado 3a demonstraram alterações ultramorfológicas indicativas de autofagia: vacúolos com dupla membrana. Além disso, os derivados AMTAC-01 e AMTAC-02 foram mais ativos contra as linhagens tumorais de próstata e melanoma, respectivamente. Ambos os derivados apresentaram atividade inibidora topoisomerase IIa na concentração de 50 μM. Os resultados indicam que uma ligação eficiente ao DNA é uma condição necessária para atividade antitumoral e que os novos derivados híbridos de acridina apresentaram promissoras atividades antiproliferativa, ligadora do DNA e inibição da topoisomerase. / People fear cancer more than any other serious illness which can be explained by the high incidence and mortality rates for some types of cancer. In the last decades, significant advances were obtained regarding cancer pathogenesis, features and therapies. Chemotherapy is often the treatment of choice for many types of cancer and the search for new chemotherapeutic agents still plays a major role in the fight against cancer. Organic intercalators are poliaromatic compounds that are able to insert into DNA double strands and inhibit in vivo acid nucleic synthesis. This characteristic is, in general, observed in anticancer drugs, hence the discovery and development of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. In this work, new anticancer agents were synthetized based on acridine nucleus for structural modification using substituted thiosemicarbazide moieties. It were synthetized eight new (Z)-2-(acridin-9- ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-3h) presenting different substituents on phenyl ring (non-substituted and electron-donating or -withdrawing) and two new 3-(acridin-9-yl)-N-benzylidene-2-cyanoacrilohydrazide derivatives (AMTAC-01 and AMTAC-02). In vitro ctDNA interaction was assayed and antiproliferative activity was evaluated against cancer cell lines of glioma (U251), breast (MCF-7), ovary expressing phenotype multiple drugs resistance (NCI-ADR/RES), kidney (786–0), lung (NCI-H460), prostate, (PC-3), ovary (OVCAR-03), colon adenocarcinoma (HT-29) and chronic myeloid leukemia (K-562). It was investigated ultramorphological changes induced by 3a treatment on MCF-7 cells by transmission and scanning electron microscopies, besides the evaluation of phosphatidylserine externalization and DNA fragmentation. Topoisomerase IIa inhibitory activity of AMTAC’s was evaluated. ctDNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. These spectroscopic alterations indicated formation of derivative-DNA complex. The calculated binding constants ranged from 1.74 x 104 to 1.0 x 106 M-1 for 3a-3h derivatives and 2.3-2.5 x 106 M-1 for AMTAC’s compounds. These values mean that the new acridine derivatives have high affinity to ctDNA. From (Z)-2-(acridin-9- ylmethylene)-N-phenylhydrazinecarbothioamide serie, the most efficient compound in in vitro binding to ctDNA was 3f, while the most active compound in antiproliferative assay was 3a. Regarding lethal concentration (LC50), compound 3a was lethal to NCI-H460, MCF-7, U251, NCI-ADR/RES, HT-29 and PC-3 cells on the respective concentrations: 43.41, 60.26, 68.93, 70.2, 70.24 and 72.95 μM. Scanning and transmission electron microscopies revealed that treatment with 60 μM of 3a induces morphological changes in MCF-7 cells indicating autophagy, such as vacuole with double membrane. On the other hand, antiproliferative assay demonstrated that AMTAC-01 and AMTAC-02 were most active against prostate and melanoma tumor cell lines, respectively. Both derivatives displayed potent topoisomerase IIα inhibitory activity at 50 μM. Taking together, these results indicates that an efficient binding is a necessary condition for antiproliferative activity. The new acridine hybrid derivatives showed promising DNA binding, antiproliferative against cancer cells and inhibitory topoisomerase activity.
3

Utilização de informações termodinâmicas e estruturais na predição de sítios de ligação de receptores nucleares ao DNA: uma abordagem computacional / Using thermodynamic and structural information for predicting binding sites of nuclear receptors to DNA: a computational approach

Valeije, Ana Claudia Mancusi 04 February 2015 (has links)
Os projetos genoma têm fornecido uma grande quantidade de informação sobre a arquitetura gênica e sobre a configuração física de suas respectivas regiões flanqueadoras (RF). Estas RF contêm informações com o potencial de auxiliar na elucidação de vários processos biológicos, como os mecanismos de expressão gênica e de sua regulação. Estes mecanismos são de extrema importância para a compreensão do correto funcionamento dos organismos e das patologias que os afetam. Uma parte significativa dos mecanismos de controle de expressão gênica atuam na fase transcricional. Na base destes mecanismos está o recrutamento de proteínas que se ligam às regiões promotoras da transcrição, as quais são segmentos específicos de DNA que podem estar localizados tanto próximos à região de início da transcrição (TSS) quanto a centenas ou até a milhares de pares de bases dela. Essas proteínas compõem a maquinaria transcricional e podem ativar ou inibir o processo de transcrição. Experimentalmente, os segmentos regulatórios podem ser identificadas utilizando métodos complexos de biologia molecular, tais como SELEX, ChiP-ChiP, ChIP-Seq, dentre outros. Uma estratégia alternativa aos métodos experimentais é a utilização de metodologias computacionais. Análises computacionais tendem a ser mais rápidas, baratas e flexíveis do que protocolos experimentais, além de poderem ser utilizadas em larga escala. Atualmente, os métodos computacionais disponíveis necessitam de informações experimentais para a definição de padrões globais de preferências de sequências de DNA para a ligação de fatores de transcrição (TFBS, em inglês transcription factor binding sites). Entretanto, esses métodos apresentam uma elevada taxa de falso positivos e, por vezes, apresentam também taxas significativas de falso negativos, além de serem limitados ao estudo de fatores de transcrição de espécies bem conhecidas, o que diminui a área de aplicação dos mesmos. Diante deste cenário, o uso de métodos computacionais que não necessitem da informação referente aos sítios de ligação, bem como os que utilizem parâmetros mais robustos de detecção dos resultados, em detrimento dos escores de pontuação provindos de alinhamentos, podem acrescentar uma sensível melhoria ao processos de predição de regiões regulatórias. Neste projeto, foi desenvolvido um novo modelo computacional (TFBSAnalyzer) para análise e identificação de TFBS em elementos regulatórios, que utiliza técnicas de modelagem molecular para a construção de complexos entre um fator de transcrição ancorado a estruturas de DNA com sequências variáveis de bases e, através de cálculos termodinâmicos de entalpia de ligação, determina uma função de pontuação baseada na energia de ligação e realiza a predição de sítios de ligação ao DNA para o fator de transcrição em análise. Esta abordagem foi testada com três fatores de transcrição como sistemas-modelo, pertencentes à família dos receptores nucleares, a saber: o receptor de estrógeno ER-alfa (Estrogen Receptor Alpha), o receptor de ácido retinoico RAR-beta (Retinoid Acid Receptor Beta) e o receptor X retinóico RXR (Retinoid X Receptor). Os modelos previstos computacionalmente foram comparados aos dados experimentais disponíveis para estes receptores nucleares, os quais apresentaram as seguintes taxas de FP/FN: 10%/0 para RAR-beta e RXR, 21%/6% para ER-alfa. Também simulamos um experimento de ChIP-seq do ER-alfa no genoma humano, cujos genes selecionados foram submetidos a uma análise de enriquecimento de fatores de transcrição curados experimentalmente, que fazem sua regulação, revelando que o receptor de estrógeno está realmente envolvido no processo. Para mostrar a aplicabilidade geral de nosso método, nós modelamos a distribuição de energia de ligação para o receptor NHR-28 isoforma a de Caenorhabditis elegans com DNA . Obtivemos distribuições de energia semelhantes àquelas encontradas para os NRs modelos, portanto seria possível aplicar o método para buscar possíveis TFBSs para este receptor no genoma de C. elegans. Os dados gerados e as metodologias desenvolvidas neste projeto devem acrescentar uma sensível melhoria aos processos de predição de regiões regulatórias e consequentemente auxiliar no entendimento dos mecanismos envolvidos no processo de expressão gênica e de sua regulação. / The genome projects have provided a lot of information about the genetic architecture, as well as on the physical configuration of their flanking regions (FR). These FR have the potential to aid in the elucidation of many biological processes, such as the mechanisms involved in gene expression and its regulation. These mechanisms are extremely important for undeerstanfind the correct functioning of organisms as well as the pathologies that affect them. A significant part of the control mechanisms of gene expression act during transcription. On the basis of this mechanisms is the recruitment of proteins that bind to promoter regions of transcription, which are specific segments of DNA that can be located either near the transcription start site or at hundreds or even thousands of base pairs away. These proteins form the transcription machinery, which can activate or inhibit the transcription process. The regulatory segments can be identified experimentally using complex methods of molecular biology, such as SELEX, ChIP-chip, ChIP-seq, among others. An alternative strategy to these experimental methods is the use of computational methodologies for predicting regulatory regions. Computational analysis tend to be faster, cheaper and more flexible than the experimental protocols, and can be used on a larger scale. Currently, the available computational methods require information previously obtained from experiments in order to define global standards of preference of DNA-Binding sequences for transcription factors (TFBS - Transcription Factor Binding Sites). However, these methods have a high rate of false positives and sometimes also have significant rates of false negatives, besides being limited to the study of transcription factors of well-known species, which decreases their application area. In this scenario, the use of computational methods that do not require previous information concerning the binding sites and use more robust parameters of results detection, instead of alignment scores, may add significant improvement to the processes of predicting regulatory regions. In this project, we developed a new computational model TFBSAnalyzer) for analysis and identification of regulatory elements using molecular modeling techniques for the construction of complexes between a transcription factor bound to specific DNA structures with variable sequences of bases and, by means of thermodynamic calculations of bond enthalpy, provides a scoring function based on the binding energy and predicts the DNA binding sites for the transcription factor in analysis. This approach was tested initially with three transcription factors as models, belonging to the nuclear receptor family, namely estrogen receptor ER-alpha (Estrogen Receptor Alpha), the retinoic acid receptor RAR-beta (Retinoid Acid Receptor Beta) and the retinoic X receptor RXR (Retinoid X Receptor). The computationally predicted models were compared to experimental data available for these nuclear receptors, and presented the following rates of FP/FN: 10%/0 for RAR-beta and RXR, 21%/6% for ER-alpha. We also simulated an experiment of ChIP-seq with ER-alpha with the human genome, where the selected genes were subjected to a transcription factor enrichment analysis, with curated information, revealing that the estrogen receptor is indeed involved in their regulation. To show that our method has a general applicability, we modeled the binding energy distribution for the NHR-28 receptor, isoform a, from Caenorhabditis elegans. The energy distributions obtained were similar to the ones obtained for the model NR, so it would be possible to use the method and search for possible TFBS in the C. elegans genome. The data generated and the methodologies developed in this project should add a significant improvement to the prediction processes of regulatory regions and, consequently, help to understand the mechanisms involved in the gene expression process and its regulation.
4

Utilização de informações termodinâmicas e estruturais na predição de sítios de ligação de receptores nucleares ao DNA: uma abordagem computacional / Using thermodynamic and structural information for predicting binding sites of nuclear receptors to DNA: a computational approach

Ana Claudia Mancusi Valeije 04 February 2015 (has links)
Os projetos genoma têm fornecido uma grande quantidade de informação sobre a arquitetura gênica e sobre a configuração física de suas respectivas regiões flanqueadoras (RF). Estas RF contêm informações com o potencial de auxiliar na elucidação de vários processos biológicos, como os mecanismos de expressão gênica e de sua regulação. Estes mecanismos são de extrema importância para a compreensão do correto funcionamento dos organismos e das patologias que os afetam. Uma parte significativa dos mecanismos de controle de expressão gênica atuam na fase transcricional. Na base destes mecanismos está o recrutamento de proteínas que se ligam às regiões promotoras da transcrição, as quais são segmentos específicos de DNA que podem estar localizados tanto próximos à região de início da transcrição (TSS) quanto a centenas ou até a milhares de pares de bases dela. Essas proteínas compõem a maquinaria transcricional e podem ativar ou inibir o processo de transcrição. Experimentalmente, os segmentos regulatórios podem ser identificadas utilizando métodos complexos de biologia molecular, tais como SELEX, ChiP-ChiP, ChIP-Seq, dentre outros. Uma estratégia alternativa aos métodos experimentais é a utilização de metodologias computacionais. Análises computacionais tendem a ser mais rápidas, baratas e flexíveis do que protocolos experimentais, além de poderem ser utilizadas em larga escala. Atualmente, os métodos computacionais disponíveis necessitam de informações experimentais para a definição de padrões globais de preferências de sequências de DNA para a ligação de fatores de transcrição (TFBS, em inglês transcription factor binding sites). Entretanto, esses métodos apresentam uma elevada taxa de falso positivos e, por vezes, apresentam também taxas significativas de falso negativos, além de serem limitados ao estudo de fatores de transcrição de espécies bem conhecidas, o que diminui a área de aplicação dos mesmos. Diante deste cenário, o uso de métodos computacionais que não necessitem da informação referente aos sítios de ligação, bem como os que utilizem parâmetros mais robustos de detecção dos resultados, em detrimento dos escores de pontuação provindos de alinhamentos, podem acrescentar uma sensível melhoria ao processos de predição de regiões regulatórias. Neste projeto, foi desenvolvido um novo modelo computacional (TFBSAnalyzer) para análise e identificação de TFBS em elementos regulatórios, que utiliza técnicas de modelagem molecular para a construção de complexos entre um fator de transcrição ancorado a estruturas de DNA com sequências variáveis de bases e, através de cálculos termodinâmicos de entalpia de ligação, determina uma função de pontuação baseada na energia de ligação e realiza a predição de sítios de ligação ao DNA para o fator de transcrição em análise. Esta abordagem foi testada com três fatores de transcrição como sistemas-modelo, pertencentes à família dos receptores nucleares, a saber: o receptor de estrógeno ER-alfa (Estrogen Receptor Alpha), o receptor de ácido retinoico RAR-beta (Retinoid Acid Receptor Beta) e o receptor X retinóico RXR (Retinoid X Receptor). Os modelos previstos computacionalmente foram comparados aos dados experimentais disponíveis para estes receptores nucleares, os quais apresentaram as seguintes taxas de FP/FN: 10%/0 para RAR-beta e RXR, 21%/6% para ER-alfa. Também simulamos um experimento de ChIP-seq do ER-alfa no genoma humano, cujos genes selecionados foram submetidos a uma análise de enriquecimento de fatores de transcrição curados experimentalmente, que fazem sua regulação, revelando que o receptor de estrógeno está realmente envolvido no processo. Para mostrar a aplicabilidade geral de nosso método, nós modelamos a distribuição de energia de ligação para o receptor NHR-28 isoforma a de Caenorhabditis elegans com DNA . Obtivemos distribuições de energia semelhantes àquelas encontradas para os NRs modelos, portanto seria possível aplicar o método para buscar possíveis TFBSs para este receptor no genoma de C. elegans. Os dados gerados e as metodologias desenvolvidas neste projeto devem acrescentar uma sensível melhoria aos processos de predição de regiões regulatórias e consequentemente auxiliar no entendimento dos mecanismos envolvidos no processo de expressão gênica e de sua regulação. / The genome projects have provided a lot of information about the genetic architecture, as well as on the physical configuration of their flanking regions (FR). These FR have the potential to aid in the elucidation of many biological processes, such as the mechanisms involved in gene expression and its regulation. These mechanisms are extremely important for undeerstanfind the correct functioning of organisms as well as the pathologies that affect them. A significant part of the control mechanisms of gene expression act during transcription. On the basis of this mechanisms is the recruitment of proteins that bind to promoter regions of transcription, which are specific segments of DNA that can be located either near the transcription start site or at hundreds or even thousands of base pairs away. These proteins form the transcription machinery, which can activate or inhibit the transcription process. The regulatory segments can be identified experimentally using complex methods of molecular biology, such as SELEX, ChIP-chip, ChIP-seq, among others. An alternative strategy to these experimental methods is the use of computational methodologies for predicting regulatory regions. Computational analysis tend to be faster, cheaper and more flexible than the experimental protocols, and can be used on a larger scale. Currently, the available computational methods require information previously obtained from experiments in order to define global standards of preference of DNA-Binding sequences for transcription factors (TFBS - Transcription Factor Binding Sites). However, these methods have a high rate of false positives and sometimes also have significant rates of false negatives, besides being limited to the study of transcription factors of well-known species, which decreases their application area. In this scenario, the use of computational methods that do not require previous information concerning the binding sites and use more robust parameters of results detection, instead of alignment scores, may add significant improvement to the processes of predicting regulatory regions. In this project, we developed a new computational model TFBSAnalyzer) for analysis and identification of regulatory elements using molecular modeling techniques for the construction of complexes between a transcription factor bound to specific DNA structures with variable sequences of bases and, by means of thermodynamic calculations of bond enthalpy, provides a scoring function based on the binding energy and predicts the DNA binding sites for the transcription factor in analysis. This approach was tested initially with three transcription factors as models, belonging to the nuclear receptor family, namely estrogen receptor ER-alpha (Estrogen Receptor Alpha), the retinoic acid receptor RAR-beta (Retinoid Acid Receptor Beta) and the retinoic X receptor RXR (Retinoid X Receptor). The computationally predicted models were compared to experimental data available for these nuclear receptors, and presented the following rates of FP/FN: 10%/0 for RAR-beta and RXR, 21%/6% for ER-alpha. We also simulated an experiment of ChIP-seq with ER-alpha with the human genome, where the selected genes were subjected to a transcription factor enrichment analysis, with curated information, revealing that the estrogen receptor is indeed involved in their regulation. To show that our method has a general applicability, we modeled the binding energy distribution for the NHR-28 receptor, isoform a, from Caenorhabditis elegans. The energy distributions obtained were similar to the ones obtained for the model NR, so it would be possible to use the method and search for possible TFBS in the C. elegans genome. The data generated and the methodologies developed in this project should add a significant improvement to the prediction processes of regulatory regions and, consequently, help to understand the mechanisms involved in the gene expression process and its regulation.

Page generated in 0.0599 seconds