• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 63
  • 52
  • 34
  • 34
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 533
  • 533
  • 136
  • 75
  • 58
  • 53
  • 53
  • 50
  • 45
  • 45
  • 39
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Mechanism and Regulation of Initiation of Protein Synthesis in Eubacteria / Regleringen av proteinsyntesens initiering i Eubacteria och dess mekanistiska förklaring

Antoun, Ayman January 2005 (has links)
<p>Initiation of protein synthesis in <i>E.coli </i>involves several steps, which lead to the formation of the first peptide bond. This process requires three initiation factors: IF1, IF2 and IF3. Using a novel technique of combined light scattering and stopped-flow, we elucidated the importance of IF2•GTP conformation for the recruitment of 50S to 30S pre-initiation complex. Moreover, GTP hydrolysis is essential for IF2 release and later binding of ternary complex. Interestingly, a switch in IF2 affinity to G-nucleotides is induced during 30S pre-initiation complexes formation. </p><p>We found that IF1, previously with unknown functions in vitro, increases the rate of naked 70S dissociation by a factor 80 and acts as a fidelity factor in preventing 70S formation containing elongator tRNA instead of fMet-tRNA<sup>fMet</sup>. We showed that RRF/EFG/IF3 split both naked and post-termination complexes while IF1/IF3 split only naked ribosomes. The mechanisms of action of RRF/ EFG, the order of their binding to 70S, as well as, the three different conformation of EF-G on the ribosomes are emphasized. Interestingly, 70S formation rate is dependent on the concentration of IF3 and not linear with 50S subunits concentration. We demonstrated that the rate-limiting step in 70S formation is IF3 dissociation from 30S complexes.</p><p>The interplay between initiation factors in the rate and accuracy of protein synthesis was thoroughly studied. Using fMet-tRNA<sup>fMet</sup> (initiator tRNA), Met-tRNA<sup>fMet </sup>(non-formylated initiator tRNA) and Phe-tRNA<sup>Phe</sup> (elongator tRNA), we showed that the major player in the accuracy is IF2 through recognizing the formyl group on fMet-tRNA<sup>fMet</sup>, while IF3 acts by increasing both the on- and off-rate of tRNA from 30S pre-initiation complexes.</p><p>Collectively, these novel results describe a comprehensive model of initiation of protein synthesis. In this model, initiation factors increase the rate of fMet-tRNA<sup>fMet</sup> binding to 30S subunits, subsequently; the stabilization of fMet-tRNA<sup>fMet</sup> by IF2 increases the rate of IF3 dissociation. Later, IF2 in GTP conformation allows 50S docking to 30S pre-initiation complex free of IF3 followed by GTP hydrolysis allowing IF2 release for ternary complex to bind and start elongation of protein synthesis. </p>
302

Ellipsometrische Lichtstreuung als neue Methode zur Charakterisierung der Grenzfläche von Kolloiden

Erbe, Andreas January 2004 (has links)
Die ellipsometrische Lichtstreuung wird als eine neue, leistungsfähige Methode zur Charakterisierung von Schichten um kolloidale Partikel vorgestellt. Theoretische Grundlage der Methode ist die Mie-Theorie der Lichtstreuung. Experimentell wurde die Polarisationsoptik eines Null-Ellipsometers in den Strahlengang eines Lichtstreuaufbaus eingebaut. Wie in der Reflexionsellipsometrie um den Brewsterwinkel herum erhält man in der ellipsometrischen Streuung einen Winkelbereich, in dem die Methode empfindlich auf Schichten an der Oberfläche der Partikel ist. An verschiedenen Systemen wurde die Tauglichkeit der ellipsometrischen Streuung zur Charakterisierung von Schichten auf Partikeln demonstriert. So wurden Dicke und Brechungsindex einer thermosensitiven Schicht von Poly(N-isopropylacrylamid) auf einem Poly(methylmethacrylat)-Kern bestimmt. Damit ist es möglich, experimentell den Schichtbrechungsindex und damit den Quellungsgrad zu bestimmen. Des Weiteren wurde der Einfluss der NaCl-Konzentration auf die Polyelektrolythülle von Poly(methylmethacrylat)-Poly(styrolsulfonat)-Blockcopolymer-Partikeln untersucht. Die Polyelektrolytketten liegen im hier untersuchten Beispiel nicht gestreckt vor. Als drittes wurde die Verteilung von niedermolekularen Ionen um elektrostatisch stabilisierte Poly(styrol)-Latexpartikel in Wasser untersucht. Hier wurde gezeigt, dass die beobachteten Schichtdicken und Schichtbrechungsindizes viel größer sind, als nach der klassischen Poisson-Boltzmann-Theorie zu erwarten ist. Des Weiteren wurde die Doppelbrechung von unilamellaren Lipidvesikeln bestimmt. Außerdem wurden Messungen der dynamische Lichtstreuung im Intensitätsminimum der Ellipsometrie durchgeführt. Dabei wird ein Prozess mit einer Korrelationszeit, die unabhängig vom Streuvektor, aber abhängig von der verwendeten Wellenlänge ist, sichtbar. Die Natur dieses Prozesses konnte hier nicht vollständig geklärt werden. / Ellipsometric light scattering is introduced as a new and powerful technique to characterize layers on colloidal particles. For the experiments, the polarization optics used reflection ellipsometry was installed in the beam of a light scattering setup. Using the priciples of null ellipsometry, a small range of scattering angles is obtained, were the method is sensitive to layers on the surface of colloidal particles. This is an analogy to the layer sensitivity of reflection ellipsometry at planer interfaces close to the Brewster angle. The theoretical basis for ellipsometric scattering is the Mie theory with its modern supplements. The feasibility of characterizing layers on colloidal particles was demonstrated with several systems. First, layer thickness and layer refractive index of poly(N-isopropylacrylamide) layers on a poly(methylmethacrylate) core were determined. This was the first time that the refractive index and with that the degree of swelling of a layer was directly determined in an scattering experiment. Second, polyelectrolyte layers on Poly(methylmethacrylate)-Poly(styrenesulfonate)-blockcopolymer particles were characterized. The influence of the salt concentration on the parameters of the layer was determined. The results show that the polyelectrolyte chains in the system investigated are not streched. Third, layers of ions around electrostatically-stabilized poly(styrene) particles were characterized. The layer thickness and layer refractive index in these examples are shown to be much larger than predicted by the classical Poisson-Boltzmann-theory. In addition, the birefringence of lipid vesicles was determined. Another interesting application of the ellipsometric scattering is the dynamic light scattering with ellipsometric optics. Its results show a characteristic process with a correlation time independent of the scattering vector, but wavelength dependent. The origin of this mode is not yet completely clarified.
303

Whiteness and Fluorescence in Paper : Perception and Optical Modelling

Gustafsson Coppel, Ludovic January 2010 (has links)
This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This includes psycho-physical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition. Existing models are first tested and improvements are suggested and evaluated. The standardised and widely used CIE whiteness equation is first tested on commercial office papers with visual evaluations by different panels of observers, and improved models are validated. Simultaneous contrast effects, known to affect the appearance of coloured surfaces depending on the surrounding colour, are shown to significantly affect the perceived whiteness. A colour appearance model including simultaneous contrast effects  (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. A recently proposed extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness. It is shown that the quantum efficiency of two different fluorescent whitening agents (FWA) in plain paper is rather constant with FWA type, FWA concentration, filler content, and fibre type. Hence, the fluorescence efficiency is essentially dependent only on the ability of the FWA to absorb light in its absorption band.  Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness. In addition, a modular Monte Carlo simulation tool, Open PaperOpt, is developed to allow future spatial- and angle-resolved particle level light scattering simulation. / PaperOpt
304

Regolith Properties of Mercury Derived from Observations and Modelling

Warell, Johan January 2003 (has links)
The properties of Mercury's regolith have been investigated at optical and near-infrared wavelengths with high-resolution imaging, photometric, and spectroscopic observations with the Swedish Vacuum Solar Telescope and the Nordic Optical Telescope. A new global optical map at a spatial resolution of 200 km shows that the well known (from Mariner 10) and poorly known hemispheres are indistinguishable with respect to the distribution, number density, and morphological parameters of bright albedo features. This indicates a globally uniform recent (&lt;3 Gyr) geologic evolution, a compositionally very homogeneous surface and the absence of a lunar-like mare–terrae albedo dichotomy. It is found that the spectrum of Mercury is linear, strongly sloped, lacks detectable absorption features and displays a unique relation between the continuum slope and photometric geometry. Mercury has a photometrically smoother surface than the average near-side Moon, and is 10–15% fainter and 50% more back scattering in the V-band. Unlike the case for the Moon, the average single-particle backscattering anisotropy increases with wavelength. Intimate regolith mixing models are used to determine a probable surface composition of predominantly Ca-rich labradorite plagioclase feldspar with minor low-iron enstatitic orthopyroxene, and rule out high-iron pyroxenes or olivines as other than insignificant constituents. Abundances of FeO ~1.2 wt%, TiO2 ~0 wt%, and submicroscopic metallic iron ~0.1–0.3 wt% are found for the average surface. This implies an optically active grain size of 15–30 μm that is a factor of two smaller than for the Moon. A numerical integration study shows that hermeocentric orbits with semi-major axes &lt;30 mercurian radii for elliptic retrograde, and circular prograde, object are stable for durations in excess of 4.5 Myr. The weak gravitational scattering effect of Mercury indicates that re-impacting particles may have been important for the early evolution of its crust.
305

Thermophysical Modelling and Mechanical Stability of Cometary Nuclei

Davidsson, Björn January 2003 (has links)
Comets are the most primordial and least evolved bodies in the Solar System. As such, they are unique sources of information regarding the early history of the Solar System. However, little is known about cometary nuclei since they are very difficult to observe due to the obscuring coma. Indirect methods are therefore often used to extract knowledge about nucleus parameters such as size, shape, density, material strength, and rotational properties. For example, tidal and non-tidal splitting of cometary nuclei can provide important information about nuclear densities and material strengths, but only if the criteria for mechanical stability are well known. Masses and densities of cometary nuclei can also be obtained by studying orbital modifications due to non-gravitational forces, but only if the thermophysics of comets can be modelled accurately. A detailed investigation is made regarding the mechanical stability of small Solar System bodies. New expressions for the Roche distance are derived, as functions of the size, shape, density, material strength, rotational period, and spin axis orientation of a body. The critical rotational period for centrifugal breakup in free space is also considered, and the resulting formulae are applied to comets for which the size, shape and rotational period have been estimated observationally, in order to place constraints on their densities and material strengths. A new thermophysical model of cometary nuclei is developed, focusing on two rarely studied features - layer absorption of solar energy, and parallel modelling of the nucleus and innermost coma. Sophisticated modelling of radiative transfer processes and the kinetics of gas in thermodynamic non-equilibrium form the basis for this work. The new model is applied to Comet 19P/Borrelly, and its density is estimated by reproducing the non-gravitational changes of its orbit.
306

Cellulose degradation in pulp fibers studied as changes in molar mass distributions

Berggren, Rickard January 2003 (has links)
In this thesis, size-exclusion chromatography (SEC) of woodpolymers dissolved in lithium chloride/N,N-dimethylacetamide(LiCl/DMAc) has been used to characterize the molar massdistributions (MMD) of wood polymers in pulp fibers afterchemical degradation. Characterization of birch kraft pulps subjected to ozonedegradation and acid hydrolysis, respectively, rendereddifferent changes in the MMD. Ozone degradation resulted inlarge redistributions of the original MMD, observed as thedevelopment of a distinct fraction of cellulose withintermediate molar mass. Acid hydrolysis resulted in minorchanges of the original MMD compared to ozonation. Fiberssubjected to acid hydrolysis were considerably weaker thanozonated fibers. These results indicated that there aredifferences in how the two chemicals degrade the fiber. The solubility of softwood kraft pulp fibers was enhanced byderivatization of the fiber polymers with ethyl-isocyanateduring simultaneous dissolution in LiCl/DMAc. Thederivatization made it possible to achieve reliable estimationsof the MMD, and hence molar masses, of softwood kraft pulps.The derivatization procedure made it possible to dissolve 90 %of softwood kraft pulps with kappa numbers over 50. Severe alkaline degradation of birch and Norway spruce woodchips was studied both by varying the pulping time and byvarying the initial alkali concentration. Differences werefound in the MMD of the two fiber types, and the alkalinedegradation was found to affect polymers in the entire MMD. Multi-angular laser light scattering (MALLS) was used as adetection technique with SEC on cellulosic samples. The MMD andaverage molar masses obtained through directstandardcalibration with commercial standards were compared with MMDand molar masses as obtained by MALLS-detection. Largediscrepancies were found, and two methods of correcting forthese discrepancies were developed. Theoretical simulations of polymer degradation wereperformed. Random, or homogeneous degradation was used as amodel for alkaline cellulose chain scission, and a resemblancewith experimental data was observed. End-wise depolymerizationof cellulose was also simulated and the results are discussedin the light of experimentally observed MMD. <b>Keywords:</b>cellulose, kraft pulp, birch, spruce,ozonation, acid hydrolysis, degradation, MMD, sizeexclusionchromatography, light scattering, molar mass, chainscission
307

Optical Response From Paper : Angle-dependent Light Scattering Measurements, Modelling, and Analysis

Granberg, Hjalmar January 2003 (has links)
No description available.
308

Mechanism and Regulation of Initiation of Protein Synthesis in Eubacteria / Regleringen av proteinsyntesens initiering i Eubacteria och dess mekanistiska förklaring

Antoun, Ayman January 2005 (has links)
Initiation of protein synthesis in E.coli involves several steps, which lead to the formation of the first peptide bond. This process requires three initiation factors: IF1, IF2 and IF3. Using a novel technique of combined light scattering and stopped-flow, we elucidated the importance of IF2•GTP conformation for the recruitment of 50S to 30S pre-initiation complex. Moreover, GTP hydrolysis is essential for IF2 release and later binding of ternary complex. Interestingly, a switch in IF2 affinity to G-nucleotides is induced during 30S pre-initiation complexes formation. We found that IF1, previously with unknown functions in vitro, increases the rate of naked 70S dissociation by a factor 80 and acts as a fidelity factor in preventing 70S formation containing elongator tRNA instead of fMet-tRNAfMet. We showed that RRF/EFG/IF3 split both naked and post-termination complexes while IF1/IF3 split only naked ribosomes. The mechanisms of action of RRF/ EFG, the order of their binding to 70S, as well as, the three different conformation of EF-G on the ribosomes are emphasized. Interestingly, 70S formation rate is dependent on the concentration of IF3 and not linear with 50S subunits concentration. We demonstrated that the rate-limiting step in 70S formation is IF3 dissociation from 30S complexes. The interplay between initiation factors in the rate and accuracy of protein synthesis was thoroughly studied. Using fMet-tRNAfMet (initiator tRNA), Met-tRNAfMet (non-formylated initiator tRNA) and Phe-tRNAPhe (elongator tRNA), we showed that the major player in the accuracy is IF2 through recognizing the formyl group on fMet-tRNAfMet, while IF3 acts by increasing both the on- and off-rate of tRNA from 30S pre-initiation complexes. Collectively, these novel results describe a comprehensive model of initiation of protein synthesis. In this model, initiation factors increase the rate of fMet-tRNAfMet binding to 30S subunits, subsequently; the stabilization of fMet-tRNAfMet by IF2 increases the rate of IF3 dissociation. Later, IF2 in GTP conformation allows 50S docking to 30S pre-initiation complex free of IF3 followed by GTP hydrolysis allowing IF2 release for ternary complex to bind and start elongation of protein synthesis.
309

A Membrane Separation Process for Biodiesel Purification

Saleh, Jehad 02 February 2011 (has links)
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.
310

A Membrane Separation Process for Biodiesel Purification

Saleh, Jehad 02 February 2011 (has links)
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.

Page generated in 0.1124 seconds