• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 11
  • 10
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Instantaneous Modal Parameters and Their Applications to Structural Health Monitoring

Hera, Adriana 19 December 2005 (has links)
"This dissertation proposes a vibration-based approach to detect and monitor structural damage by tracking the instantaneous modal parameters. A change in the instantaneous modal parameters indicates change in the structural health condition. In contrast to many existing structural health monitoring schemes, the proposed approach is less model dependent and works well for both sudden and evolving damage, general loading conditions and complex structures. The instantaneous modal parameters, including modal frequency, mode shape vector and modal damping ratio, are introduced as a bridge between the system properties and time varying vibration modes. The theoretical background of the time-varying vibration modes is developed. It has been shown that for slowly time-varying systems such modes exist and the instantaneous modal parameters have a clear physical interpretation and can be identified from free and forced vibration responses. A set of known techniques are used in an innovative way to identify the instantaneous modal parameters. Applicability of the identification techniques depends on the nature and availability of measurement data. Wavelet ridge method is used to identify the instantaneous modal frequencies and normalized instantaneous mode shape vectors from free vibration data. Wavelet packet sifting technique in conjunction with Hilbert transform and confidence index is proposed to identify the normalized instantaneous mode shape vector from both free and forced vibration data. Time-varying Kalman filter is integrated with the wavelet packet sifting technique to identify the instantaneous modal frequencies and the instantaneous modal damping ratios from free and forced vibration data. The proposed approach has been validated using both simulation and experimental data. The simulation data is obtained from a multi-degree-of-freedom system with time varying stiffness under different loading conditions. Experimental data include both impact testing data from the ASCE benchmark study and shaking-table test data of a full-size two-story wooden building structure, conducted at DPRI, Kyoto University, Japan. It has been shown that the proposed approach can successfully detect and monitor damage and, therefore, has great potential for real applications."
12

Contribuições ao problema de filtragem H-infinito para sistemas dinâmicos / Contributions to the H-infinity problem for dynamical systems

Lacerda, Márcio Júnior, 1987- 25 August 2018 (has links)
Orientadores: Pedro Luis Dias Peres, Ricardo Coração de Leão Fontoura de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-25T15:07:40Z (GMT). No. of bitstreams: 1 Lacerda_MarcioJunior_D.pdf: 1206868 bytes, checksum: c5abb83323581461eb40c95f27c95097 (MD5) Previous issue date: 2014 / Resumo: Este trabalho apresenta novas condições na forma de desigualdades matriciais lineares para o projeto de filtros H-infinito de ordem completa em três diferentes contextos: i) sistemas lineares incertos discretos com um atraso variante no tempo afetando os estados; ii) sistemas lineares com parâmetros variantes no tempo, contínuos e discretos, sujeitos a incertezas nas medições dos parâmetros; iii) sistemas não lineares quadráticos contínuos e discretos no tempo. Para cada contexto, o objetivo é projetar filtros: i) com termos atrasados nos estados; ii) dependentes dos parâmetros incertos medidos; iii) com termos quadráticos. Em cada um dos casos, o ponto de partida é a existência de uma função de Lyapunov que assegure estabilidade e um limitante para a norma H-infinito do sistema aumentado, ou seja, o sistema original conectado com o filtro de ordem completa. As condições de projeto são obtidas impondo-se uma determinada estrutura para as variáveis de folga, resultando em desigualdades matriciais com parâmetros escalares. A eficácia das condições apresentadas é ilustrada por meio de comparações numéricas utilizando exemplos da literatura / Abstract: This work presents new conditions in the form of linear matrix inequalities for full order H-infinity filter design in three different contexts: i) uncertain linear discrete-time systems with a time-varying delay affecting the states ii) linear parameter-varying systems, continuous and discrete-time, subject to inexactly measured parameters; iii) continuous and discrete-time nonlinear quadratic systems. For each context, the aim is to design filters: i) with state-delayed terms; ii) dependent upon the inexactly measured parameters; iii) with quadratic terms. In each case, the starting point is the existence of a Lyapunov function that assures stability and a bound to the H-infinity norm of the augmented system, that is, the original system conected with the full order filter. The design conditions are obtained by imposing a given structure to the slack variables, resulting in matrix inequalities with scalar parameters. The effectiveness of the proposed conditions is illustrated by means of numerical comparisons and benchmark examples from the literature / Doutorado / Automação / Doutor em Engenharia Elétrica
13

Filtragem de Kalman aplicada à computação digital com abordagem de espaço de estado variante no tempo / Kalman filtering applied to a digital computing process with a time-varying state space approach

Battaglin, Paulo David, 1951- 26 August 2018 (has links)
Orientador: Gilmar Barreto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T06:42:54Z (GMT). No. of bitstreams: 1 Battaglin_PauloDavid_D.pdf: 3180685 bytes, checksum: 5e1e9893bb97a4df42116a4c0d8b10d6 (MD5) Previous issue date: 2014 / Resumo: Este trabalho mostrará a aplicação do filtro de Kalman a um processo computacional discreto, o qual será representado por um modelo matemático que é um sistema de equações lineares, multivariáveis, discretas, estocásticas e variantes no tempo. As contribuições desta pesquisa evidenciam a construção de um modelo matemático apropriado de observabilidade instantânea para representar sistemas que variam rapidamente no tempo; a construção dos fundamentos teóricos do filtro de Kalman a ser aplicado em sistemas lineares, multivariáveis, discretos, estocásticos e variantes no tempo; bem como a construção deste filtro neste contexto e sua aplicação a um processo computacional discreto. Neste trabalho propomos um método para determinar: a matriz de observabilidade instantânea, o vetor de estimação de estado interno, a matriz de covariâncias de erros de estimação de estado interno e a latência de um processo computacional discreto, quando as medidas na saída do computador são conhecidas. Aqui mostramos que quando a propriedade observabilidade instantânea do sistema é verificada, a latência de um processo computacional pode ser estimada. Esta é uma vantagem comparada com os métodos de observabilidade usual, os quais são baseados em cenários estáticos. A aplicação potencial dos resultados deste trabalho é na predição de congestionamentos em processos que variam no tempo e acontecem em computadores digitais. Em uma perspectiva mais ampla, o método da observabilidade instantânea pode ser aplicado na identificação de patologias, na previsão de tempo, em navegação e rastreamento no solo, na água e no ar; no mercado de ações e em muitas outras áreas / Abstract: This work will show the application of the Kalman filter to a discrete computational process, which will be represented by a mathematical model: a system of linear, multivariable, discrete, stochastic and time-varying equations. The contributions of this research show the construction of an appropriate mathematical model of instantaneous observability to represent systems that vary quickly in time; the construction of the theoretical foundations of the Kalman filter to be applied to a linear, multivariable, discrete, stochastic and time-varying system; the construction of this filter in this context and its application to a discrete computational process. In this research we propose a method to determine: the instantaneous observability matrix, the internal state vector estimation, Covariance matrix of internal state estimation error and the latency of a digital computational process, when the measures on the computer output are known. Here we show that when the instantaneous observability property of the system comes true, a computing process latency can be estimated. This is an advantage compared to usual observability methods, which are based on static scenarios. The potential application of the results of this work is to predict bottlenecks in time-varying processes which happen inside the discrete computers. In a broader perspective, the instantaneous observability method can be applied on identification of a pathology, weather forecast, navigation and tracking on ground, in the water and in the air; in stock market prediction and many other areas / Doutorado / Automação / Doutor em Engenharia Elétrica
14

Análise e síntese de sistemas LPV polinomiais homogêneos usando funções de Lyapunov dependentes de sucessivos instantes de tempo / Analysis and synthesis of homogeneous polynomially LPV systems using path-dependent Lyapunov function

Rodrigues, Luis Antonio, 1987- 22 August 2018 (has links)
Orientador: Juan Francisco Camino dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-22T01:28:47Z (GMT). No. of bitstreams: 1 Rodrigues_LuisAntonio_M.pdf: 1882720 bytes, checksum: efb662d3473168965c88de41357ef029 (MD5) Previous issue date: 2012 / Resumo: O presente trabalho investiga os problemas de estabilidade assintótica e desempenho H'INFINITO' de sistemas lineares a parâmetros variantes discretos no tempo. São fornecidas condições suficientes para análise de estabilidade, análise de desempenho H'INFINITO' e síntese de controladores estáticos de realimentação de saída robustos e por ganho escalonado. Além disso, é proposto um método de parametrização polinomial homogênea de sistemas LPV afins. Assume-se que a matriz do sistema tem dependência polinomial homogênea de grau arbitrário sobre os parâmetros que variam dentro de um politopo com conhecidos limitantes sobre suas taxas de variação. As propriedades geométricas do domínio politópico são exploradas para se obter um conjunto finito de desigualdades matriciais lineares que levam em consideração os limitantes sobre as taxas de variação dos parâmetros. As condições LMIs são obtidas usando uma função de Lyapunov quadrática nos estados com dependência polinomial homogênea dos parâmetros variantes em instantes sucessivos de tempo. As condições fornecidas são aplicadas no modelo LPV de um sistema vibroacústico. Comparações com resultados numéricos encontrados na literatura mostram os benefícios das técnicas propostas / Abstract: This work investigates stability and H'INFINITE' performance of discrete-time linear parameter varying systems. Sufficient conditions for stability analysis, H'INFINITE' performance analysis and synthesis of both robust and gain-scheduled static output feedback controller are provided. It is assumed that the system matrices have a homogeneous polynomial dependence of arbitrary degree on the time-varying parameters. Thus, a homogeneous-polynomially parametrization method for affine LPV systems is proposed. The parameters are assumed to vary inside a polytope and to have known bounds on their rates of variation. The geometric properties of the polytopic domain are exploited to derive a finite set of LMIs that take into account the bounds on the rates of variation of the scheduling parameters. The LMI conditions are obtained using a quadratic in the state Lyapunov function with a homogeneous polynomial dependence on the scheduling parameters at successive instants of time. The proposed techniques are applied to an LPV model of a vibroacoustic setup. Comparisons with numerical results found in literature show the benefits of the proposed approach / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
15

On Integral Quadratic Constraint Theory and Robust Control of Unmanned Aircraft Systems

Fry, Jedediah Micah 11 September 2019 (has links)
This dissertation advances tools for the certification of unmanned aircraft system (UAS) flight controllers. We develop two thrusts to this goal: (1) the validation and improvement of an uncertain UAS framework based on integral quadratic constraint (IQC) theory and (2) the development of novel IQC theorems which allow the analysis of uncertain systems having time-varying characteristics. Pertaining to the first thrust, this work improves and implements an IQC-based robustness analysis framework for UAS. The approach models the UAS using a linear fractional transformation on uncertainties and conducts robustness analysis on the uncertain system via IQC theory. By expressing the set of desired UAS flight paths with an uncertainty, the framework enables analysis of the uncertain UAS flying about any level path whose radius of curvature is bounded. To demonstrate the versatility of this technique, we use IQC analysis to tune trajectory-tracking and path-following controllers designed via H2 or H-infinity synthesis methods. IQC analysis is also used to tune path-following PID controllers. By employing a non-deterministic simulation environment and conducting numerous flight tests, we demonstrate the capability of the framework in predicting loss of control, comparing the robustness of different controllers, and tuning controllers. Finally, this work demonstrates that signal IQCs have an important role in obtaining IQC analysis results which are less conservative and more consistent with observations from flight test data. With regards to the second thrust, we prove a novel theorem which enables robustness analysis of uncertain systems where the nominal plant and the IQC multiplier are linear time-varying systems and the nominal plant may have a non-zero initial condition. When the nominal plant and the IQC multiplier are eventually periodic, robustness analysis can be accomplished by solving a finite-dimensional semidefinite program. Time-varying IQC multipliers are beneficial in analysis because they provide the possibility of reducing conservatism and are capable of expressing uncertainties that have unique time-domain characteristics. A number of time-varying IQC multipliers are introduced to better describe such uncertainties. The utility of this theorem is demonstrated with various examples, including one which produces bounds on the UAS position after an aggressive Split-S maneuver. / Doctor of Philosophy / This work develops tools to aid in the certification of unmanned aircraft system (UAS) flight controllers. The forthcoming results are founded on robust control theory, which allows the incorporation of a variety of uncertainties in the UAS mathematical model and provides tools to determine how robust the system is to these uncertainties. Such a foundation provides a complementary perspective to that obtained with simulations. Whereas simulation environments provide a probabilistic-type analysis and are oftentimes costly, the following results provide worst-case guarantees—for the allowable disturbances and uncertainties—and require far less computational resources. Here we take two approaches in our development of certification tools for UAS. First we validate and improve on an uncertain UAS framework that relies on integral quadratic constraint (IQC) theory to analyze the robustness of the UAS in the presence of uncertainties and disturbances. Our second approach develops novel IQC theorems that can aid in providing bounds on the UAS state during its flight trajectory. Though the applications in this dissertation are focused on UAS, the theory can be applied to a wide variety of physical and nonphysical problems wherein uncertainties in the mathematical model cannot be avoided.
16

Une contribution à l'observation et à l'estimation des systèmes linéaires / A contribution to the observation and estimation of linear systems

Tian, Yang 08 December 2010 (has links)
Ce mémoire est dédié à l’étude de la synthèse de l’estimation d’état en temps fini par une approche algébrique (les techniques développées au sein de l’équipe ALIEN) pour les systèmes linéaires à paramètres invariant dans le temps (LTI) sujets à des perturbations extérieures inconnues, les systèmes linéaires à paramètres variant dans le temps (LTV) et les systèmes linéaires à commutation en temps continu (SLC). Pour les systèmes LTI et LTV, une expression formelle de l’état en fonction des intégrales itérées des sorties et de l’entrée a été donnée. Pour les systèmes linéaires à commutation, en combinant les résultats de l’estimation d’état pour les systèmes LTI et de la détection de l’instant de commutation en temps réel présentée dans le chapitre 4, nous donnons la démarche principale de l’estimation en temps réel du mode courant et l’état continu du système. Pour ce faire, on applique certains outils mathématiques : la transformation de Laplace, les outils issus du calcul opérationnel et la théorie des distributions / This PhD thesis is dedicated to the synthesis of the state estimation in a finite time by an algebraic approach (the techniques developed within the ALIEN group) for the linear time-invariant systems (LTI) subject to the external unknown disturbances, the linear time-varying systems (LTV) and the switched linear systems (SLC) in continuous time. For the LTI and LTV systems, a formal expression of state as a function of iterated integrals of the output and the input is obtained. For switched linear systems, combining the results of state estimation for LTI systems and switch instant detection presented in Chapter 4, we give the main approach of current mode estimation and the continuous state estimation in real time. To do this, one applies some mathematical tools: Laplace transforms, the operational calculus and the theory of distribution
17

Timbre Perception of Time-Varying Signals

Arthi, S January 2014 (has links) (PDF)
Every auditory event provides an information-rich signal to the brain. The signal constitutes perceptual attributes of pitch, loudness, timbre, and also, conceptual attributes like location, emotions, meaning, etc. In the present work we examine the timbre perception of time-varying signals in particular. While stationary signal timbre, by-itself is complex perceptually, the time-varying signal timbre introduces an evolving pattern, adding to its multi-dimensionality. To characterize timbre, we conduct psycho-acoustic perception tests with normal-hearing human subjects. We focus on time-varying synthetic speech signals(can be extended to music) because listeners are perceptually consistent with speech. Also, we can parametrically control the timbre and pitch glides using linear time-varying models. In order to quantify the timbre change in time-varying signals, we define the JND(Just noticeable difference) of timbre using diphthongs, synthesized using time-varying formant frequency model. The diphthong JND is defined as a two dimensional contour on the plane of percentage change of formant frequencies of terminal vowels. Thus, we simplify the perceptual probing to a lower dimensional space, i.e, 2-D even for a diphthong, which is multi-parametric. We also study the impact of pitch glide on the timbre JND of the diphthong. It is observed that timbre JND is influenced by the occurrence of pitch glide. Focusing on the magnitude of perceptual timbre change, we design a MUSHRA-like listening test using the vowel continuum in the formant-frequency space. We provide explicit anchors for reference: 0% and 100%, thus quantifying the perceptual timbre change on a 1-D scale. We also propose an objective measure of timbre change and observe that there is good correlation between the objective measure and subjective human responses of percentage timbre change. Using the above experimental methodology, we studied the influence of pitch shift on timbre perception and observed that the perceptual timbre change increases with change in pitch. We used vowels and diphthongs with 5 different types of pitch glides-(i) Constant pitch,(ii) 3-semitone linearly-up,(iii) 3 semitone linearly-down, (iv)V–like pitch glide and (v) hat-like pitch glide. The present study shows that timbre change can be measured on a 1-D scale if the perturbation is along one-dimension. We observe that for bright vowels(/a/and/i/), linearly decreasing pitch glide(dull pitch glide)causes more timbre change than linearly increasing pitch glide(bright pitch glide).For dull vowels(/u/),it is vice-versa. To summarize, in congruent pitch glides cause more perceptual timbre change than congruent pitch glides.(Congruent pitch glide implies bright pitch glide in bright vowel or dull pitch glide in dull vowel and in congruent pitch glide implies bright pitch glide in dull vowel or dull pitch glide in bright vowel.) Experiments with quadratic pitch glides show that the decay portion of pitch glide affects timbre perception more than the attack portion in short duration signals with less or no sustained part. In case of time-varying timbre, bright diphthongs show patterns similar to bright vowels. Also, for bright diphthongs(/ai/), perceived timbre change is most with decreasing pitch glide(dull pitch glide). We also observed that listeners perceive more timbre change in constant pitch than in pitch glides, congruent with the timbre or pitch glides with quadratic changes. The main conclusion of this study is that pitch and timbre do interact and in congruent pitch glides cause more timbre change than congruent pitch glides. In the case of quadratic pitch glides, listener perception of vowels is influenced by the decay than the attack in pitch glide in short duration signals. In the case of time-varying timbre also, in congruent pitch glides cause the most timbre change, followed by constant pitch glide. For congruent pitch glides and quadratic pitch glides in time-varying timbre, the listeners perceive lesser timbre change than otherwise.
18

STRUCTURE-BORNE NOISE MODEL OF A SPUR GEAR PAIR WITH SURFACE UNDULATION AND SLIDING FRICTION AS EXCITATIONS

Jayasankaran, Kathik 25 August 2010 (has links)
No description available.
19

Estimation and separation of linear frequency- modulated signals in wireless communications using time - frequency signal processing.

Nguyen, Linh- Trung January 2004 (has links)
Signal processing has been playing a key role in providing solutions to key problems encountered in communications, in general, and in wireless communications, in particular. Time-Frequency Signal Processing (TFSP) provides eective tools for analyzing nonstationary signals where the frequency content of signals varies in time as well as for analyzing linear time-varying systems. This research aimed at exploiting the advantages of TFSP, in dealing with nonstationary signals, into the fundamental issues of signal processing, namely the signal estimation and signal separation. In particular, it has investigated the problems of (i) the Instantaneous Frequency (IF) estimation of Linear Frequency-Modulated (LFM) signals corrupted in complex-valued zero-mean Multiplicative Noise (MN), and (ii) the Underdetermined Blind Source Separation (UBSS) of LFM signals, while focusing onto the fast-growing area of Wireless Communications (WCom). A common problem in the issue of signal estimation is the estimation of the frequency of Frequency-Modulated signals which are seen in many engineering and real-life applications. Accurate frequency estimation leads to accurate recovery of the true information. In some applications, the random amplitude modulation shows up when the medium is dispersive and/or when the assumption of point target is not valid; the original signal is considered to be corrupted by an MN process thus seriously aecting the recovery of the information-bearing frequency. The IF estimation of nonstationary signals corrupted by complex-valued zero-mean MN was investigated in this research. We have proposed a Second-Order Statistics approach, rather than a Higher-Order Statistics approach, for IF estimation using Time-Frequency Distributions (TFDs). The main assumption was that the autocorrelation function of the MN is real-valued but not necessarily positive (i.e. the spectrum of the MN is symmetric but does not necessary has the highest peak at zero frequency). The estimation performance was analyzed in terms of bias and variance, and compared between four dierent TFDs: Wigner-Ville Distribution, Spectrogram, Choi-Williams Distribution and Modified B Distribution. To further improve the estimation, we proposed to use the Multiple Signal Classification algorithm and showed its better performance. It was shown that the Modified B Distribution performance was the best for Signal-to-Noise Ratio less than 10dB. In the issue of signal separation, a new research direction called Blind Source Separation (BSS) has emerged over the last decade. BSS is a fundamental technique in array signal processing aiming at recovering unobserved signals or sources from observed mixtures exploiting only the assumption of mutual independence between the signals. The term "blind" indicates that neither the structure of the mixtures nor the source signals are known to the receivers. Applications of BSS are seen in, for example, radar and sonar, communications, speech processing, biomedical signal processing. In the case of nonstationary signals, a TF structure forcing approach was introduced by Belouchrani and Amin by defining the Spatial Time- Frequency Distribution (STFD), which combines both TF diversity and spatial diversity. The benefit of STFD in an environment of nonstationary signals is the direct exploitation of the information brought by the nonstationarity of the signals. A drawback of most BSS algorithms is that they fail to separate sources in situations where there are more sources than sensors, referred to as UBSS. The UBSS of nonstationary signals was investigated in this research. We have presented a new approach for blind separation of nonstationary sources using their TFDs. The separation algorithm is based on a vector clustering procedure that estimates the source TFDs by grouping together the TF points corresponding to "closely spaced" spatial directions. Simulations illustrate the performances of the proposed method for the underdetermined blind separation of FM signals. The method developed in this research represents a new research direction for solving the UBSS problem. The successful results obtained in the research development of the above two problems has led to a conclusion that TFSP is useful for WCom. Future research directions were also proposed.
20

Predictive vehicle motion control for post-crash scenarios

Nigicser, David January 2017 (has links)
The aim of the project is to design an active safety system forpassenger vehicles for mitigating secondary collisions after an initialimpact. The control objective is to minimize the lateral deviationfrom the known original path while achieving a safe heading angle afterthe initial collision. A hierarchical controller structure is proposed:the higher layer is formulated as a linear time varying model predictivecontroller that denes the virtual control moment input; the lowerlayer deploys a rule-based controller that realizes the requested moment.The designed control system is then tested and validated inSimulink as well as in IPG CarMaker, a high delity vehicle dynamicssimulator. / Syftet med projektet är att för personbilar designa ett aktivtsäkerhetssystem för att undvika följdkollisioner efter en första kollision.Målet är att minimera den laterala avvikelsen från den ursprungligafärdvägen och att samtidigt uppnå en säker kurs efter den första kollisionen.En hierarkisk regulatorstruktur föreslås. Det övre skiktet iregulatorn är formulerat som en linjär tidsvarierande modell prediktivkontroller som definierar den virtuella momentinmatningen. Det nedreskiktet använder en regelbaserad regulator som realiserar det begärdamomentet. Det konstruerade styrsystemet testades och validerades sedani Simulink samt i IPG CarMaker, en simulator med hög precisionför fordonsdynamik.

Page generated in 0.0534 seconds