• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 76
  • 20
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 2
  • 1
  • Tagged with
  • 224
  • 224
  • 92
  • 87
  • 79
  • 39
  • 38
  • 34
  • 34
  • 31
  • 29
  • 29
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Molecular simulation of vapour-liquid-liquid-equilibrium.

Moodley, Suren. January 2008 (has links)
Phase equilibrium data is vital for designing chemical separation equipment. Traditionally, such data is obtained through laboratory experiments by sampling and analysing each phase of an equilibrated chemical mixture. An alternative means of generating such data is via molecular simulations, which also gives insight into the microscopic structure of the phases. This project was undertaken due to the lack of work on molecular simulations in predicting vapour-liquid-liquid equilibrium (VLLE). Gibbs Ensemble Monte Carlo molecular simulations were performed in the isochoricisothermal (NVT) and isobaric-isothermal (NVT) ensembles to determine the ability and limitations of the Transferable Potentials for Phase Equilibria (United-Atom) and Extended Simple Point Charge (SPC-E) force fields in predicting three-phase fluid equilibrium for two binary and three ternary industrially relevant mixtures: n-hexane/water (1), ethane/ethanol (2), methane/n-heptane/water (3), n-butane/1-butene/water (4) and nhexane/ ethanol/water (5). The NPT ensemble proved inadequate for predicting VLLE for binary mixtures, as for both binary mixtures (1 and 2), the simulations reverted to two phases. This was due in part to the unlike-pair interactions between pseudoatoms in different molecules not being accurately predicted at the specified simulation conditions to reproduce experimental mixture densities and vapour pressures. It was also due to the sensitivity of the NPT ensemble to perturbations which probably removed the system from its three-phase trajectory in Gibbs phase space, since specifying even the correct pressure corresponding to the potential models was unsuccessful in obtaining stable VLLE. Furthermore, ternary VLLE could not be obtained for a mixture exhibiting an extremely narrow three-phase region (4) and simulations for a miscible, non-ideal mixture (5) gave mole fractions that were in poor agreement with experiment. Good results were obtained for mixture 3 which exhibits limited mutual solubilities and a large three phase region. The NVT ensemble overcame the shortcomings of the NPT ensemble by producing three stable phases for the binary mixtures, revealing that the three-phase pressures were shifted by as much as 12%. Also, the narrow three-phase region of mixture 4 was overcome by adjusting the total system volume, producing three stable phases. These were also the first successful binary VLLE simulations involving complex polyatomic molecules. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2008.
102

Low-pressure vapour-liquid equilibrium and molecular simulation of carboxylic acids.

Clifford, Scott Llewellyn. January 2004 (has links)
No abstract available. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2004.
103

Automation of a static-synthetic apparatus for vapour-liquid equilibrium measurement.

Moodley, Kuveneshan. January 2012 (has links)
The measurement of vapour-liquid equilibrium data is extremely important as such data are crucial for the accurate design, simulation and optimization of the majority of separation processes, including distillation, extraction and absorption. This study involved the measurement of vapour-liquid equilibrium data, using a modified version of the static total pressure apparatus designed within the Thermodynamics Research Unit by J.D. Raal and commissioned by Motchelaho, (Motchelaho, 2006 and Raal et al., 2011). This apparatus provides a very simple and accurate means of obtaining P-x data using only isothermal total pressure and overall composition (z) measurements. Phase sampling is not required. Phase equilibrium measurement procedures using this type of apparatus are often tedious, protracted and repetitive. It is therefore useful and realizable in the rapidly advancing digital age, to incorporate computer-aided operation, to decrease the man hours required to perform such measurements. The central objective of this work was to develop and implement a control scheme, to fully automate the original static total pressure apparatus of Raal et al. (2011). The scheme incorporates several pressure feedback closed loops, to execute process step re-initialization, valve positioning and motion control in a stepwise fashion. High resolution stepper motors were used to engage the dispensers, as they provided a very accurate method of regulating the introduction of precise desired volumes of components into the cell. Once executed, the control scheme requires approximately two days to produce a single forty data points (P-x) isotherm, and minimizes human intervention to two to three hours. In addition to automation, the apparatus was modified to perform moderate pressure measurements up to 1.5 MPa. Vapour-liquid equilibrium test measurements were performed using both the manual and automated operating modes to validate the operability and reproducibility of the apparatus. The test systems measured include the water (1) + propan-1-ol (2) system at 313.15 K and the n-hexane (1) + butan- 2-ol system at 329.15 K. Phase equilibrium data of binary systems, containing the solvent morpholine-4-carbaldehyde (NFM) was then measured. The availability of vapour-liquid equilibrium data for binary systems containing NFM is limited in the literature. The new systems measured include: n-hexane (1) + NFM (2) at 343.15, 363.15 and 393.15 K, as well as n-heptane (1) + NFM (2) at 343.15, 363.15 and 393.15 K. The modified apparatus is quite efficient as combinations of the slightly volatile NFM with highly volatile alkane constituents were easily and accurately measured. The apparatus also allows for accurate vapour-liquid equilibrium measurements in the dilute composition regions. A standard uncertainty in the equilibrium pressure reading, within the 0 to 100 kPa range was calculated to be 0.106 kPa, and 1.06 kPa for the 100 to 1000 kPa pressure range. A standard uncertainty in the equilibrium temperature of 0.05 K was calculated. The isothermal data obtained were modelled using the combined (-) method described by Barker (1953). This involved the calculation of binary interaction parameters, by fitting the data to various thermodynamic models. The virial equation of state with the Hayden-O’Connell (1975) and modified Tsonopoulos (Long et al., 2004) second virial coefficient correlations were used in this work to account for vapour phase non-ideality. The Wilson (1964), NRTL (Renon and Prausnitz, 1968), Tsuboka-Katayama-Wilson (1975) and modified Universal Quasi-Chemical (Anderson and Prausnitz, 1978) activity coefficient models were used to account for the liquid phase non-ideality. A stability analysis was carried out on all the new systems measured to ensure that two-liquid phase formation did not occur in the measured temperature range. A model-free method based on the numerical integration of the coexistence equation was also used to determine the vapour phase compositions and activity coefficients from the measured P-z data. These results compare well with the results obtained by the model-dependent method. The infinite dilution activity coefficients for the systems under consideration were determined by the method of Maher and Smith (1979b), and by suitable extrapolation methods. Excess enthalpy and excess entropy data were calculated for the systems measured, using the Gibbs-Helmholtz equation in conjunction with the fundamental excess property relation. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
104

VLE measurements of ether alcohol blends for investigation on reformulated gasoline

Benecke, Travis Pio January 2016 (has links)
Submitted in fulfillment of the requirements of the degree of Master of Engineering, Durban University of Technology, Durban, South Africa, 2016. / Separation processes in the chemical process industries is dependent on the science of chemical thermodynamics. In the field of chemical separation process engineering, phase equilibrium is a primary area of interest. This is due to separation processes such as distillation and extraction which involves the contacting of different phases for effective separation. The focal point of this research project is the measurement and modeling of binary vapour-liquid equilibrium (VLE) phase data of systems containing ether-alcohol organic compounds. The VLE data were measured with the use of the modified apparatus of Raal and Mühlbauer, (1998). The systems of interest for this research arose from an industrial demand for VLE data for systems containing ether-alcohol organic compounds. This gave rise to the experimental VLE data isotherms being measured for the following binary systems: a) Methyl tert-butyl ether (1) + 1-pentanol (2) at 317.15 and 327.15 K b) Methyl tert-butyl ether (1) + 2, 2, 4-trimethylpentane (2) at 307.15, 317.15 and 327.15K c) 2, 2, 4-Trimethylpentane (1) + 1-pentanol (2) at 350.15, 360.15 and 370.15K d) Diisopropyl ether (1) + 2,2,4-trimethylpentane (2) at 320.15, 330.15 and 340.15K e) Diisopropyl ether (1) + 1-propanol (2) at 320.15, 330.15 and 340.15K f) Diisopropyl ether (1) + 2-butanol (2) at 320.15, 330.15 and 340.15K The data for all the measured binary systems investigated at these temperatures are currently not available in the open source literature found on the internet and in library text resources. The systems were not measured at the same temperatures because certain system isotherm temperatures correlate to a pressures above 1 bar. This pressure of 1 bar is the maximum operating pressure specification of the VLE apparatus used in this project. The experimental VLE data were correlated for model parameters for both the  and methods. For the method, the fugacity coefficients (vapour-phase non-idealities) were tabulated using the virial equation of state and the Hayden-O’Connell correlation (1975); chemical theory and the Nothnagel et al. (1973) correlation method. The activity coefficients (liquid phase non-idealities) were calculated using three local-composition based activity coefficients models: the Wilson (1964) model, the NRTL model (Renon and Prausnitz, 1968); and the UNIQUAC model (Abrams and Prausnitz, 1975). Regarding the direct method, the Soave-Redlich-Kwong (Redlich and Kwong, 1949) and Peng-Robinson (1976) equations of state ii were used with the temperature dependent alpha-function (α) of Mathias and Copeman (1983) with the Wong-Sandler (1992) mixing rule. Thermodynamic consistency testing, which presents an indication of the quality and reliability of the data, was also performed for all the experimental VLE data. All the systems measured showed good thermodynamic consistency for the point test of Van Ness et al. (1973) - the consistency test of choice for this research. This however, was based on the model chosen for the data regression of a particular system. Therefore, the combined method of VLE reduction produced the most favourable results for the NRTL and Wilson models. / M
105

Study of the selectivity to light hydrocarbons in Fischer-Tropsch synthesis

Muleja, Adolph Anga January 2016 (has links)
School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa 26 February 2016 / Many reports in the open literature have focused on Fischer-Tropsch (FT) kinetics, yet none of them appear to be able to explain FTS completely. Few of the FT models consider the production of olefins and paraffins separately. To study whether the selectivity to olefins and paraffins follows similar trends and if kinetics alone suffices to explain FT phenomena, a series of FT experiments were conducted in a fixed bed reactor loaded with 10% Co/TiO2. FT feeds were periodically switched from syngas to syngas + N2 by adjusting the total reactor pressure so that the reactant partial pressures (PCO and PH2) remained constant. During the initial deactivation (the first 1200 hours), it was found that the formation rates of olefins remained fairly constant (in some cases they increased) while those of paraffins decreased. This indicates the deactivation is mainly caused by the decrease in the paraffin formation rate. Currently, none of the published kinetic models can explain the phenomenon that the decay of the reaction rates of olefins and paraffins were not the same during the deactivation. At steady state (1055 to 2700 hours, overall reaction rate fairly constant), adding extra N2 decreased the selectivity to the light hydrocarbons. These results suggest that by feeding the extra N2 there could be an increase in selectivity and formation rates to long chain hydrocarbons (C5+). Plotting molar ratios of paraffin to olefin (P/O) with carbon number n+1 versus the ratio with carbon number n revealed linear relationships which are independent of feed gases, catalyst activity and reaction temperature. These results imply that product distributions might be determined by some sort of equilibrium. Another plot of normalised mole fractions of CnH2n, Cn+1H2n+2, and CnH2n+2 in ternary diagrams showed that after disturbances these product distributions tended to stable points. It is suggested that this could be due to slow changes in the liquid composition after the disturbances. Although not all the results are explained, the researcher emphasises that normal kinetics alone cannot explain these results completely. There might be factors, iii including vapour-liquid equilibrium or reactive distillation, which are worthy of consideration to explain FTS. / MT2016
106

Estudo do equilíbrio sólido-líquido de sistemas contendo aminoácidos e proteínas. / Study of the solid-liquid equilibrium of systems containing amino acids and proteins.

Franco, Luís Fernando Mercier 27 February 2012 (has links)
A modelagem termodinâmica do equilíbrio sólido-líquido de sistemas que contêm aminoácidos e proteínas tem sido cada vez mais necessária para o desenvolvimento de equações que permitam um projeto mais racional e eficiente das operações unitárias encontradas nos processos de purificação destas moléculas, tais como a precipitação e a cristalização. Neste trabalho, é apresentada uma relação unívoca entre a solubilidade de proteínas e o pH; sendo necessários como parâmetros apenas informações sobre a estrutura primária e os valores das constantes de ionização de cada resíduo na cadeia protéica, considerando os diferentes estados de ionização que a proteína assume em solução. Esta relação foi aplicada a sistemas de insulina suína a três diferentes temperaturas, a sistemas de insulinas mutantes e a sistemas de b-lactoglobulina a diferentes concentrações de cloreto de sódio, resultando em uma bem sucedida correlação dos dados experimentais de solubilidade destes sistemas. Estudou-se também a não-idealidade de sistemas contendo aminoácidos, partindo de considerações sobre diferentes estados de ionização da molécula assim como feito para proteínas, mas adicionando um termo de não-idealidade, neste caso, um termo advindo do modelo de Pitzer para soluções eletrolíticas. Os sistemas, cujas curvas de solubilidade em função do pH foram estudadas, são: DL-Alanina, DL-Metionina, L-Isoleucina, L-Leucina, DL-Fenilalanina, também glicina e seus oligopeptídeos e moléculas com grupos b-lactâmicos tais como a ampicilina, que é um antibiótico, e o ácido 6-aminopenicilânico, que é um precursor na rota de produção da ampicilina. Uma interpretação através de termodinâmica estatística para o parâmetro de interação de Pitzer permitiu uma análise mais profunda dos resultados. Relações entre o segundo coeficiente virial osmótico, a solubilidade de proteínas e a concentração de agente precipitante foram desenvolvidas e aplicadas a sistemas de lisozima, ovalbumina e imunoglobulina humana. Os resultados desta aplicação mostraram quão profícua é a abordagem empregada. / The thermodynamic modeling of solid-liquid equilibrium of systems containing amino acids and proteins has become increasingly necessary for a more rational and efficient design of unit operations found in the downstream processing of these molecules, such as precipitation and crystallization. In this work, an unequivocal relationship between the protein solubility and the pH is presented. The resulting equation accounts for the different ionization states that protein molecules may assume in solution, and is written as a function of the primary structure and values of the ionization constant of each residue in the protein chain. The model was applied to the solid-liquid equilibrium of porcine insulin solutions at three different temperatures, solutions of mutant insulin molecules and solutions of b-lactoglobulin at different sodium chloride concentrations. A very successful correlation of the experimental solubility data was obtained in all cases. The solubility of amino acids and b-lactam compounds was also studied through a similar approach, but in this case the non-ideality of the solutions was accounted for by introducing Pitzers model for electrolyte solutions. The compounds whose solubility curves as a function of the pH were modeled include the amino acids DL-Alanine, DL-Methionine, L-Isoleucine, L-Leucine, DL-Phenylalanine, Glycine and its oligopeptides, and b-lactam compounds such as ampicillin, which is an antibiotic, and 6-aminopenicillanic acid, which is a precursor in the ampicillin production route. The interpretation of the binary interaction parameter values through a statistical thermodynamic approach allowed a deeper analysis of the results. Finally, equations relating the osmotic second virial coefficient, the protein solubility and the concentration of precipitant agents such as salts were developed. The resulting equations were successfully applied to solutions containing lysozyme, ovalbumin and immunoglobulin, which shows that the considered approach is promising.
107

Aplicação da abordagem diferencial ao cálculo do equilíbrio osmótico em sistemas de múltiplos solventes. / Application of differential approach to the calculation of osmotic equilibrium of multisolvent systems.

Yano, Anderson Junichi 10 April 2007 (has links)
Neste trabalho aplicou-se a metodologia diferencial para o cálculo do equilíbrio osmótico dentro da abordagem de Lewis-Randall para sistemas multisolventes. Nessa abordagem, são obtidas equações diferenciais que relacionam pressão e composição do sistema na condição de potencial químico constante dos solventes: o estado de equilíbrio osmótico é calculado integrando-se as equações, obtendo-se a curva de pressão osmótica em função da concentração do soluto. Essas equações não têm solução analítica, mas foram numericamente integradas para sistemas cuja não idealidade seja descrita pelo modelo UNIQUAC. A metodologia foi aplicada na análise de sistemas em que ocorre equilíbrio de fases líquido-líquido, o que em princípio corresponde ao teste mais severo a que pode ser submetida. A comprovação da eficácia da metodologia foi feita por meio da verificação das relações de equilíbrio nos passos intermediários e pela equação de Gibbs-Duhem. Os resultados mostraram que a abordagem é bastante confiável, e que o equilíbrio é corretamente calculado para uma variedade de situações. Foi possível discernir os casos em que é admissível utilizar um pseudo-solvente na descrição do equilíbrio osmótico (sistemas cujos solventes apresentam estruturas semelhantes, sem interação preferencial), e situações em que o cálculo pode não levar a resultados adequados (sistemas em que os solventes apresentem miscibilidade parcial). Os programas desenvolvidos são genéricos e, portanto, podem ser usados para o cálculo do equilíbrio osmótico em qualquer sistema descrito pela equação UNIQUAC. / A differential approach to the calculation of osmotic equilibrium of multisolvent systems within the Lewis-Randall framework is presented in this work. Differential equations relating pressure and composition at constant solvent chemical potential are developed, through whose integration the osmotic equilibrium is calculated. The curves of osmotic pressure as functions of the solute concentration cannot be analytically calculated, and were obtained through numerical integration. The methodology was used to calculate osmotic equilibrium for systems described by the UNIQUAC equation presenting liquid-phase split, which presumably corresponds to the most severe test. The approach was verified by checking the equilibrium conditions at intermediate points and also by checking the Gibbs-Duhem equation. The results show that the methodology is reliable and that the osmotic equilibrium can be correctly calculated for many situations. It was possible to identify the circumstances wherein a pseudo-solvent can be defined (systems whose solvents show similar structures, without presenting preferential interactions), and wherein the calculation may lead to unreliable results (systems wherein the solvents present partial miscibility). The computer programs developed are not specific, and can therefore be used to calculate osmotic equilibrium for any systems described by the UNIQUAC equation.
108

Modelagem termodinâmica do equilíbrio sólido-líquido de misturas binárias de compostos graxos. / Thermodynamic modeling of solid-liquid equilibrium of binary mixtures of fatty compounds.

Barbosa, Deise Fernanda 26 April 2012 (has links)
O equilíbrio sólido-líquido de sistemas binários de alcoóis graxos e de ésteres graxos foi descrito por meio de modelagem termodinâmica baseada na análise de estabilidade da fase líquida. A metodologia foi aplicada a três tipos de diagramas de fases: (a) sistemas cujos constituintes apresentam miscibilidade completa, em que as substâncias são miscíveis tanto na fase sólida quanto na líquida, (b) sistemas que apresentam ponto eutético simples, (c) sistemas que apresentam ponto eutético e reação peritética. A caracterização da não-idealidade foi feita com o modelo de coeficientes de atividade de Flory-Huggins para descrição dos diferentes comportamentos, que resultou em bom ajuste dos dados. A uniformidade do valor dos parâmetros ajustados mostra que há diferentes interações moleculares comparando-se as funções químicas álcool, éster etílico e éster metílico e a presença de insaturação na cadeia carbônica. Observa-se que os resultados são fortemente afetados pelos valores de entalpia e temperatura de fusão dos compostos puros. A metodologia desenvolvida foi implementada em linguagem Fortran. Do ponto de vista formal, a análise apresentada mostra que a ocorrência de peritéticos pode ser descrita sem que seja necessário postular um modelo de coeficiente de atividade para a fase sólida quando houver imiscibilidade total. / In this work, the modeling of solid-liquid equilibrium of binary systems containing fatty alcohols or fatty esters is presented. Phase equilibrium calculations were carried out using a phase stability analysis which describes the onset of the solid phase formation. The developed methodology was applied to the modeling of three distinct types of phase diagrams: (a) systems wherein the components are miscible in both phases, (b) systems with a single eutectic point, (c) systems with eutectic point and peritectic reaction. The liquid phase non-ideality was accounted for through the Flory- Huggins model for the excess Gibbs energy. It was possible to describe the different types of phase diagrams with excellent agreement with the experimental data. The values of the adjustable parameters are rather low and depend on both the chemical function of the species considered (alcohol, methyl ester or ethyl ester) and the presence of unsaturation in their molecules. The calculated phase diagrams are strongly affected by the experimental values of enthalpy of fusion and temperature of fusion of the pure compounds. Concerning the thermodynamic description of the solid-liquid equilibrium, the presented analysis showed that it is possible to account for the peritectic reaction without assigning a model for the solid phase activity coefficient when the compounds are not miscible in this phase.
109

Equilíbrio líquido-lí­quido na produção de 5-hidroximetilfurfural. / Liquid-liquid equilibrium in the production of 5-hidroximetilfurfural.

Morant Cavalcanti, Kyriale Vasconcelos 05 December 2018 (has links)
A produção de compostos a partir de carboidratos conhecidos como blocos de construção tem despertado muito interesse da comunidade científica recentemente, principalmente em aplicações de bioenergia. Um desses compostos é o 5-hidroximetilfurfural ou HMF, o qual apresenta um alto potencial como matéria-prima na produção de biocombustíveis e produtos químicos de alto valor agregado, como polímeros e fármacos. A principal via para a obtenção de HMF é a desidratação de mono e polissacarídeos em meio ácido em um reator bifásico. A fase aquosa reacional contém um catalisador ácido e um açúcar, e a fase orgânica extrativa é formada por um solvente alcoólico parcialmente miscível com água que extrai continuamente o composto. Uma revisão de literatura revelou que o processo industrial ainda não é economicamente viável principalmente pela falta de dados termodinâmicos de equilíbrio associados à solubilidade durante a etapa extrativa, ou seja, à interação do HMF com água e solventes. Consequentemente, muita energia e reagentes são desperdiçados, juntamente com os coprodutos na tentativa de extrair de forma eficiente o HMF. Neste trabalho, avaliou-se a interação em mistura aquosa entre o HMF e três álcoois de diferentes cadeias carbônicas (1-pentanol, 1-hexanol e 1-heptanol) a temperatura de 25° C. Os coeficientes de distribuição e de seletividade foram empregados para avaliar a capacidade dos solventes de extrair o 5-hidroximetilfurfural da solução aquosa. Os resultados mostraram que o 1-pentanol apresentou melhor desempenho entre os álcoois estudados para a recuperação de HMF a partir da água. Já o modelo NRTL foi usado para correlacionar os dados experimentais e os parâmetros de interação binária relevantes. O desvio médio quadrático da raiz (RMSD) do modelo NRTL foi de 0,78%, o que indica que os dados experimentais do ELL podem ser correlacionados satisfatoriamente pelo modelo. / The building block composts\' production from carbohydrates is currently attracting the attention of the research community, especially because they could be used as bioenergy. One of those composts is 5-hydroximetilfurfural, or HMF, which has a high potential as crude matter in biofuels as well as in medicine and also in polymers\' production. The easiest way to obtain HMF is by oligosaccharides dehydration using an acid medium at a biphasic reactor. In the aqueous phase, there are an acid catalyser and a sugar, and in the extractive organic phase, there is an alcoholic solvent that is partially miscible with water, were HMF is extracted continuously. A literature review showed that the industrial extraction process is not yet economically attractive. That happens due to missing thermodynamic data that would guarantee a successful extraction, such as the liquid-liquid equilibrium (LLE) data from the HMF, water and alcohol system. By improving the LLE in the extraction phase utilising a correct and efficient alcohol, we can increase the system efficiency: more HMF and less unwanted by-products extraction and a decrease in the energy consumption. Having those things in mind, in this research solubility graphics and LLE data between HMF, water, alcohol (1-pentanol, 1-hexanol e 1-heptanol) at 298,15 K and ~0,1 MPa were determined experimentally. The distribution coefficients and selectivities were employed to assess the capacity of solvents to extract 5hydroxymethylfurfural from aqueous solution. 1-pentanol showed better performance than the other studied alcohols for 5-hydroxymethylfurfural recovery from water. The NRTL model was used to correlate the experimental data and relevant binary interaction parameters were regressed. The root mean square deviations (RMSD) of the NRTL model was around 0.78%, which indicate that the experimental LLE data can be successfully correlated by model.
110

Equilíbrio líquido-lí­quido na produção de 5-hidroximetilfurfural. / Liquid-liquid equilibrium in the production of 5-hidroximetilfurfural.

Kyriale Vasconcelos Morant Cavalcanti 05 December 2018 (has links)
A produção de compostos a partir de carboidratos conhecidos como blocos de construção tem despertado muito interesse da comunidade científica recentemente, principalmente em aplicações de bioenergia. Um desses compostos é o 5-hidroximetilfurfural ou HMF, o qual apresenta um alto potencial como matéria-prima na produção de biocombustíveis e produtos químicos de alto valor agregado, como polímeros e fármacos. A principal via para a obtenção de HMF é a desidratação de mono e polissacarídeos em meio ácido em um reator bifásico. A fase aquosa reacional contém um catalisador ácido e um açúcar, e a fase orgânica extrativa é formada por um solvente alcoólico parcialmente miscível com água que extrai continuamente o composto. Uma revisão de literatura revelou que o processo industrial ainda não é economicamente viável principalmente pela falta de dados termodinâmicos de equilíbrio associados à solubilidade durante a etapa extrativa, ou seja, à interação do HMF com água e solventes. Consequentemente, muita energia e reagentes são desperdiçados, juntamente com os coprodutos na tentativa de extrair de forma eficiente o HMF. Neste trabalho, avaliou-se a interação em mistura aquosa entre o HMF e três álcoois de diferentes cadeias carbônicas (1-pentanol, 1-hexanol e 1-heptanol) a temperatura de 25° C. Os coeficientes de distribuição e de seletividade foram empregados para avaliar a capacidade dos solventes de extrair o 5-hidroximetilfurfural da solução aquosa. Os resultados mostraram que o 1-pentanol apresentou melhor desempenho entre os álcoois estudados para a recuperação de HMF a partir da água. Já o modelo NRTL foi usado para correlacionar os dados experimentais e os parâmetros de interação binária relevantes. O desvio médio quadrático da raiz (RMSD) do modelo NRTL foi de 0,78%, o que indica que os dados experimentais do ELL podem ser correlacionados satisfatoriamente pelo modelo. / The building block composts\' production from carbohydrates is currently attracting the attention of the research community, especially because they could be used as bioenergy. One of those composts is 5-hydroximetilfurfural, or HMF, which has a high potential as crude matter in biofuels as well as in medicine and also in polymers\' production. The easiest way to obtain HMF is by oligosaccharides dehydration using an acid medium at a biphasic reactor. In the aqueous phase, there are an acid catalyser and a sugar, and in the extractive organic phase, there is an alcoholic solvent that is partially miscible with water, were HMF is extracted continuously. A literature review showed that the industrial extraction process is not yet economically attractive. That happens due to missing thermodynamic data that would guarantee a successful extraction, such as the liquid-liquid equilibrium (LLE) data from the HMF, water and alcohol system. By improving the LLE in the extraction phase utilising a correct and efficient alcohol, we can increase the system efficiency: more HMF and less unwanted by-products extraction and a decrease in the energy consumption. Having those things in mind, in this research solubility graphics and LLE data between HMF, water, alcohol (1-pentanol, 1-hexanol e 1-heptanol) at 298,15 K and ~0,1 MPa were determined experimentally. The distribution coefficients and selectivities were employed to assess the capacity of solvents to extract 5hydroxymethylfurfural from aqueous solution. 1-pentanol showed better performance than the other studied alcohols for 5-hydroxymethylfurfural recovery from water. The NRTL model was used to correlate the experimental data and relevant binary interaction parameters were regressed. The root mean square deviations (RMSD) of the NRTL model was around 0.78%, which indicate that the experimental LLE data can be successfully correlated by model.

Page generated in 0.0416 seconds