• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 1
  • Tagged with
  • 22
  • 22
  • 12
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fundamental Studies and Applications of Electrolyte/Electrode Interfaces:

Zhang, Haochuan January 2022 (has links)
Thesis advisor: Dunwei Wang / Thesis advisor: Matthias Waegele / Lithium metal anode (LMA) holds great promise as alternative anode material for next-generation high energy density batteries. Efficiency and safety are two most critical concerns that impede practical application of LMA due to unstable interface between the electrode and the electrolyte. Solid electrolyte interphase (SEI), a passivation layer formed from electrolyte decompositions on the LMA surface, dictates the chemical and mechanical evolution of the electrode/electrolyte interface, and therefore directly affect the cycle life of lithium metal batteries. Although significant progress has been achieved to improve battery performance, a thorough understanding of SEI functions and properties is still inadequate. Both compositional and structural complexity severely hinder the efforts to uncover the SEI formation and evolution mechanism. To achieve stable lithium plating and stripping over cycling, it is necessary to lay a foundation of composition-structure-property relationships that can guide rational design of ideal SEI.First, to solve the safety and efficiency issues simultaneously, a facile and effective way to enable LMA in nonflammable electrolyte was identified by simply introducing oxygen into the battery. Reversible lithium plating and stripping was realized in a flame retardant triethyl phosphate solvent otherwise incompatible to LMA. A unique electrochemically induced electrolyte decomposition pathway was proposed and studied computationally and experimentally. The SEI formation mechanism enriches the knowledge of on the complex reactions toward an ideal SEI. The operation of Li-O2 batteries and Li-ion batteries were also demonstrated in a nonflammable phosphate electrolyte system. To understand the unique role of different SEI compositions, in the second part of this thesis, we designed and synthesized two-component artificial SEI model structures for comparison study. Our central hypothesis is that tailoring LiF and Li3PO4 compositions in the SEI layer can achieve a balanced and improved electrode/electrolyte stability. A magnetron sputtering method was developed to prepare LiF and Li3PO4 mixture films on Cu substrate. Preliminary results from battery cycling tests shows that mixture SEI structure is correlated to improved Coulumbic efficiency. Next, to understand detailed Li+ ion transport properties of the SEI. We presented an outline the current understanding of Li+ ion transport mechanisms and their dependence on the SEI. We also built on this fundamental knowledge to discuss practical effects in experimental systems. Lastly, we shared our perspectives on critical remaining questions in this field. In parallel to study on electrochemical energy system, developing electrochemical methods for integrated catalysis constitutes another part of thesis. We demonstrated that reactivity of an immobilized iron catalyst could be altered by application of an electrochemical potential to a surface to enable polymerization of different classes of monomers. A method was developed to pattern functional surfaces by using electrochemical potential to activate and deactivate polymerization reactions. The orthogonal reactivity of switchable polymerization catalysts was utilized to create patterned surfaces functionalized with two different polymers initiated from mixtures of monomers. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
12

MECHANICAL PROPERTIES AND DEGRADATION OF HIGH CAPACITY BATTERY ELECTRODES: FUNDAMENTAL UNDERSTANDING AND COPING STRATEGIES

Wang, Yikai 01 January 2019 (has links)
Rechargeable lithium ion and lithium (Li) metal batteries with high energy density and stability are in high demand for the development of electric vehicles and smart grids. Intensive efforts have been devoted to developing high capacity battery electrodes. However, the known high capacity electrode materials experience fast capacity fading and have limited cycle life due to electromechanical degradations, such as fracture of Si-based electrodes and dendrite growth in Li metal electrodes. A fundamental understanding of electromechanical degradation mechanisms of high capacity electrodes will provide insights into strategies for improving their electrochemical performance. Thus, this dissertation focuses on mechanical properties, microstructure changes, and degradation mechanisms of Si composite electrodes and Li metal electrodes. Based on these findings, possible coping strategies are proposed to improve the cycling stability of both electrodes. The poor cycling life of Si-based electrodes is caused by the repeated lithiation/delithiation-induced huge volumetric change in Si particles, which leads to the fracture of particles, excessive formation of solid electrolyte interphase on the newly exposed surface, as well as the loss of electronic conductivity between Si particles and the conductive matrix. The expansion/contraction of Si particles during cycling also causes the changes in the mechanical properties, microstructure, and porosity of Si composite electrodes. Understanding the relationship between mechanical property evolution, microstructure degradation, and capacity fading is essential for the design of Si composite electrodes. Using an environmental nanoindentation system, in situ microscope cell, and electrochemical impedance spectroscopy, I investigated the mechanical properties, cracking behavior, and lithiation/delithiation kinetics of Si composite electrodes made with different polymeric binders, including polyvinylidene fluoride, Nafion, sodium-carboxymethyl cellulose, and sodium-alginate, in their realistic working environment. The mechanical property evolution is determined by the state-of-charge, porosity, irreversible volume change, and mechanical behavior of binders. Periodical crack opening and closing happens in Si composite electrodes prepared with binders that have strong adhesion with Si. Mechanical degradations, e.g., irreversible volume change, cracking, and debonding between binders and Si particles, are correlated with the evolution of lithiation/delithiation kinetics and the capacity fading of Si composite electrodes. Based on these findings, a partial charging approach is proposed and confirmed experimentally to improve the cycling stability of Si composite electrodes. Li metal electrodes suffer from the low Coulombic efficiency, high electrochemical reactivity with the electrolytes, and the safety hazards caused by the uncontrollable dendrite growth during cycling. Mechanical suppression by using solid electrolytes and artificial SEI is a promising strategy to inhibit the formation of Li dendrites. Mechanical properties of bulk and mossy Li are required for designing mechanical inhibitors and improving the stability of the Li | inhibitor interface. Using an environmental nanoindentation system, I studied the mechanical behavior, especially the time-dependent behavior, of bulk Li and porous mossy Li at ambient temperature. By combining finite element (FE) modeling with experiments, a constitutive law was determined for the viscoplastic deformation of Li metal. FE modeling also demonstrates that the elasticity has a negligible influence on the indentation deformation of bulk Li. Flat punch indentation measurements showed that mossy Li has significantly higher deformation and creep resistance than bulk Li despite of its porous microstructure. The mechanical parameters of bulk and mossy Li may be helpful to develop of dendrite-free Li metal electrodes.
13

Studies on Electrochemical Properties of Negative Electrodes for Use in the Next-generation Lithium-ion Batteries / 次世代リチウムイオン電池用負極における電気化学特性に関する研究

YU, DANNI 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24108号 / 工博第5030号 / 新制||工||1785(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
14

Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces / All solid-state battery for automotive application : shaping process and study of interfaces

Hajndl, Ognjen 15 March 2019 (has links)
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC. / Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters.
15

Poly (Ionic Liquid) Based Electrolyte for Lithium Battery Application

Safa, Meer N 14 May 2018 (has links)
The demand for electric vehicles is increasing rapidly as the world is preparing for a fossil fuel-free future in the automotive field. Lithium battery technologies are the most effective options to replace fossil fuels due to their higher energy densities. However, safety remains a major concern in using lithium as the anode, and the development of non-volatile, non-flammable, high conductivity electrolytes is of great importance. In this dissertation, a gel polymer electrolyte (GPE) consisting of ionic liquid, lithium salt, and a polymer has been developed for their application in lithium batteries. A comparative study between GPE and ionic liquid electrolyte (ILE) containing batteries shows a superior cyclic performance up to 5C rate and a better rate capability for 40 cycles for cells with GPE at room temperature. The improvement is attributed to GPE’s improved stability voltage window against lithium as well as higher lithium transference number. The performance of the GPE in lithium-sulfur battery system using sulfur-CNT cathodes shows superior rate capability for the GPE versus ILE for up to 1C rates. Also, GPE containing batteries had higher capacity retention versus ILE when cycled for 500 cycles vii at C/2 rate. Electrochemical impedance spectroscopy (EIS) studies reveal interfacial impedances for ILE containing batteries grew faster than in GPE batteries. The accumulation of insoluble Li2S2/Li2S on the electrodes decreases the active material thus contributes to capacity fading. SEM imaging of cycled cathodes reveals cracks on the surface of cathode recovered from ILE batteries. On the other hand, the improved electrochemical performance of GPE batteries indicates better and more stable passivation layer formation on the surface of the electrodes. Composite GPE (cGPE) containing micro glass fillers were studied to determine their electrochemical performance in Li batteries. GPE with 1 wt% micro fillers show superior rate capability for up to 7C and also cyclic stability for 300 cycles at C/2 rate. In situ, EIS also reveals a rapid increase in charge transfer resistance in GPE batteries, responsible for lowering the capacity during cycling. Improved ion transport properties due to ion-complex formations in the presence of the micro fillers, is evidenced by improved lithium transference number, ionic conduction, and ion-pair dissociation detected using Raman spectroscopy.
16

Accumulateurs Li/S : barrières organiques à la réactivité des polysulfures / Li/secondary Cell : organic protections polysulfide reactvity

Vinci, Valentin 01 June 2018 (has links)
Les objectifs de ce travail de thèse étaient d’explorer de nouvelles voies pour l’amélioration des performances des accumulateurs Li/S, systèmes présentant de fortes densités d’énergie théorique dont les performances sont limitées par un mécanisme électrochimique incluant des intermédiaires solubles et réactifs. Ces intermédiaires induisent une faible efficacité coulombique et une perte importante de capacité au cours du cyclage. Plusieurs stratégies ont été mises en place pour créer une barrière de nature organique, au transport ou à la réactivité de ces polysulfures, tout en gardant une approche versatile et simple à mettre en œuvre. De bons résultats ont été obtenus en termes d’efficacité coulombique et de cyclabilité, notamment grâce à l’utilisation d’un matériau polymère capable d’interactions ioniques avec les intermédiaires soufrés. Le mécanisme de dépôt du lithium et de croissance dendritique a été également étudié, pour une compréhension plus complète du système. / The objectives of this thesis work were to explore new strategies to improve the performance of Li / S accumulators, systems exhibit with high theoretical energy densities whose performance is limited by an electrochemical mechanism including soluble and reactive intermediates. These intermediates induce a low coulombic efficiency and a significant loss of capacity during cycling. Several strategies have been evaluated to create a barrier of organic nature, which mitigate the transport or the reactivity of these polysulfides. The solutions explored are versatile and simple to implement. Good results have been obtained in terms of coulombic efficiency and cyclability, in particular through the use of a polymeric material enables to form ionic interactions with the sulfur intermediates. The mechanism of lithium deposition and dendritic growth has also been studied, for a more complete understanding of the system.
17

Design, Development and Structure of Liquid and Solid Electrolytes for Lithium Batteries

Al-Salih, Hilal 11 September 2023 (has links)
Energy storage is crucial for intermittent renewable energy sources, electric vehicles, and portable devices. The continuously increasing energy consumption in these industries necessitates the enhancement of commercial lithium-ion batteries (LIB), especially regarding their safety and energy density. Historically, aqueous electrolytes were the norm in the battery industry. Prior to the development of lithium batteries, most commercially significant batteries used water as the solvent. In the past decade, "highly concentrated" electrolytes resurrected the notion of an aqueous lithium-ion battery (ALIB). Significant efforts have been made since then to comprehend the interfacial stability of these high-concentration electrolytes, and make them suitable for use in batteries especially high voltage ones. Another candidate for future batteries is All-Solid-State Batteries (ASSB) as they have the potential to double, or even triple, the energy density figures we currently achieve in LIBs mainly due to their ability to utilize lithium metal anode which has the highest specific capacity among anodes (3860 mAh g⁻¹), lowest reduction potential (-3.04 V vs SHE), and low density (0.53 g cm⁻³). This thesis first proposes a phenomenological model to describe the microstructure of aqueous electrolyte and the relation between their phase diagrams with ionic conductivity; highlighting a common correlation between the eutectic composition and peak ionic conductivity in conductivity isotherms. we then propose an empirical model correlating ionic conductivity with both molar concentration and temperature. The aim of this portion of the thesis is to provide an in depth understanding of aqueous electrolytes' physical properties in a way that can help researchers optimize the energy density and the cost of ALIBs. Moving further, the thesis presents two novel composite solid electrolytes (CSE) that were developed and fully characterized. Both of which were composed of the following four components; polyethylene oxide (PEO), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, lithium lanthanum titanate (LLTO) perovskite inorganic ceramic and the polymer plasticizer succinonitrile (SN). The careful formulation of these CSEs was based on the trade-off between film forming ability and ionic conductivity. The optimized polymer rich CSE proved to have better characteristics when compared to its ceramic rich alternative. ASSBs employing both CSEs were successfully charged and discharged when coupled with lithium metal anode and in-lab prepared composite cathode. The developed thin and flexible CSEs could be utilized in small applications (Wh-KWh) such as in consumer electronics and flexible biomedical devices (e.g., pacemakers) or larger applications (kWh-MWh) such as in EVs and large format storage for the electrical grid.
18

Caractérisation et optimisation de copolymères à blocs comme électrolytes de batteries lithium métal / Characterization and optimization of block copolymers as electrolytes for lithium metal batteries

Devaux, Didier 12 March 2012 (has links)
Le facteur clé limitant le déploiement des accumulateurs au lithium métal est dû à la formation de dendrites de lithium métallique à l'anode au cours de la recharge. Une solution consiste à employer un électrolyte solide polymère. Un copolymère à blocs est composé d'un ou plusieurs blocs conducteurs à base de POE (poly(oxyde d'éthylène)), linéaire ou branchée, dopés en sel de lithium (LiTFSI) et de blocs de renforts mécaniques qui idéalement mitigent la croissance dendritique. Ces matériaux ont la particularité de s'auto-assembler en domaines nanométriques. Les interfaces entre les domaines génèrent de bonnes propriétés mécaniques à l'échelle macroscopique tandis que localement la dynamique des chaînes POE demeure élevée, assurant la conduction ionique.Ce travail de thèse porte sur les caractérisations physico-chimiques d'électrolytes copolymères, selon différentes architectures (diblocs, triblocs et étoilées) et de l'optimisation de leurs compositions. Une étude fondamentale des polymères dopés en sel a mis en évidence les principaux mécanismes de transport ionique, ainsi que l'impact des groupes terminaux à faible masse molaire sur la conductivité et la viscosité. Cette étape a permis de sélectionner les meilleurs candidats. L'étude de la stabilité des électrolytes vis-à-vis du lithium a été menée. Après avoir formulé des cathodes, des batteries plastiques ont été assemblées et testées avec succès par cyclages galvanostatiques, en température [40°C-100°C] et à des régimes élevés. Enfin, un prototype de 6 mAh a réalisé plus de 400 cycles à des régimes C/4 et D/2 à 100°C. / The key limiting factor for the deployment of Lithium metal batteries is the formation of lithium dendrites at the anode during recharge. One solution consists in the use of a solid polymer electrolyte. A bloc copolymer is composed of one or several conductive blocks based on PEO (poly(ethylene oxide)), linear or branched, doped with a lithium salt (LiTFSI) and reinforced blocks that ideally mitigate the dendritic growth. These materials can self-organize in nanometric domains. The interfaces between the domains generate sufficient mechanical properties at the macroscopic level whilst, locally, the PEO chain dynamics remain high, ensuring ionic conduction.This thesis deals with physico-chemical characterizations of these copolymer electrolytes, with different architectures (diblock, triblock and star shaped), and the optimization of their composition. A fundamental study of doped polymers highlighted the main mechanisms of ionic transport and the impact of the end groups at low molar mass on conductivity and viscosity. This step enabled a selection of the best candidates to be made. A study of the electrolyte stability with respect to lithium was carried out. After the formulation of cathodes, plastic batteries were assembled and successfully tested by galvanostatic cycling under temperature [40°C-100°C] and high regime. Finally, a 6 mAh prototype realised more than 400 cycles under the regime C/4 and D/2 at 100°C.
19

Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère

Gle, David 23 March 2012 (has links)
Dans le contexte d'un développement durable, les véhicules électriques apparaissent comme une solution incontournable dans le futur. Parmi les dernières évolutions sur les batteries, les systèmes constitués d'une électrode au lithium (technologie lithium métal) présente des performances remarquables en termes de densité d'énergie. L'inconvénient majeur de cette méthodologie est lié à la formation de dendrites lors de la recharge susceptibles d'occasionner des courts-circuits conduisant à l'explosion de la batterie. C'est dans cet axe que s'inscrit mon sujet de thèse dont l'objectif est de développer un électrolyte polymère solide présentant une conductivité ionique élevée (2.10-4 S.cm-1 à40°C) et une tenue mécanique suffisante (30 MPa) pour limiter les phénomènes de croissance dendritique. Pour cela, la polymérisation contrôlée par les nitroxydes (NMP) a été utilisée pour synthétiser des copolymères à blocs avec un bloc possédant des groupes d'oxyde d'éthylène –CH2-CH2-O- permettant la conduction des ions lithium et un bloc de polystyrène assurant la tenue mécanique de l'électrolyte final. Le bloc assurant la conduction ionique des architectures ainsi synthétisées sont constituées soit de POE sous forme linéaire soit de POE sous forme de peigne. / In the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety.
20

Improving the Electrochemical Performance and Safety of Lithium-Ion Batteries Via Cathode Surface Engineering

Kum, Lenin Wung 07 August 2023 (has links)
No description available.

Page generated in 0.081 seconds