• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

Andersson, Jonas January 2015 (has links)
Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the material. Additives of nanosized TiO2 and powders of superionically conducting Li1.3Al0.3Ti1.7(PO4)3 were investigated as enhancers of ionic conductivity, but no positive effect could be shown. The most conductive composition was found at a [Li+]:[carbonate] ratio of 1, corresponding to a salt concentration of 74 percent by weight, which showed an ionic conductivity of 2.0 × 10–6 S cm–1 at 25 °C and 2.2 × 10–5 S cm–1 at 60 °C, whereas for even larger salt concentrations, the mechanical durability of the polymeric material was dramatically reduced, preventing use as a solid electrolyte material. Macroscopic salt crystallization was also observed for these concentrations. Ion coordination to carbonyls on the polymer chain was examined for high salt content compositions with FTIR spectroscopy, where it was found to be relatively similar between the samples, possibly indicating saturation. Moveover, with FTIR, the ion-pairing was found to increase with salt concentration. The ionic conductivity was found to be markedly lower after 7 weeks of aging of the materials with highest salt concentrations.
2

Etude d'électrolytes à base de dinitriles aliphatiques pour des batteries Li-ion / Study of electrolytes based on aliphatic dinitriles for Li-ion batteries

Farhat, Douaa 20 July 2017 (has links)
En raison de leur faible pression de vapeur et de leur stabilité électrochimique (5~6 V) et thermique, les dinitriles N≡C-(CH2)n-C≡N sont proposés comme solvants d’électrolytes alternatifs aux carbonates d’alkyles habituellement utilisés dans les batteries Li-ion. L’objectif de cette thèse est d’étudier le comportement physico-chimique de ces électrolytes alternatifs (viscosité, conductivité ionique, comportement thermique, propriétés volumétriques, etc.) et leur compatibilité avec une application dans les batteries Li-ion. Deux systèmes de batteries sont étudiés en utilisant une électrode positive d’oxyde lamellaire (LiNi1/3Mn1/3Co1/3O2) associée à une électrode négative à bas potentiel (graphite) ou à plus haut potentiel (Li4Ti5O12). La cyclabilité des électrodes en demi-pile et en pile complète est étudiée en fonction de la composition de l’électrolyte et de la nature du dinitrile utilisé. Les techniques de caractérisations suivantes : spectroscopie d’impédance électrochimique, microscopie électronique et spectroscopie de photoélectrons aux rayons X, sont utilisées pour suivre le processus de passivation des électrodes par formation d’une interface solide (SEI). L’effet de la présence d’additifs favorisant la formation de la couche de passivation a été étudié et leur efficacité est ainsi clairement mise en évidence. / Due to their low vapor pressure as well as their electrochemical (5~6 V) and thermal stability, dinitriles N≡C-(CH2)n-C≡N are proposed as alternative electrolyte solvents to alkyl carbonates commonly used in Li- ion batteries. The objective of this thesis is to study the physico-chemical behavior of these alternative electrolytes (viscosity, ionic conductivity, thermal behavior, volumetric properties, etc.) and their use in Li-ion batteries. Two battery systems are studied using a lamellar oxide (LiNi1/3Mn1/3Co1/3O2) as positive electrode associated with graphite or Li4Ti5O12 as negative electrodes. The cyclability of electrodes in half-cell and full-cell is studied according to the electrolyte composition and the nature of the dinitrile used. Characterization techniques like: electrochemical impedance spectroscopy, electron microscopy and X-Ray photoelectrons spectroscopy, are used to study the passivation of the negative electrode and the stability of the positive electrode. The effect of adding specific solid electrolyte interphase (SEI) builders is investigated and their efficiency is hence clearly demonstrated.
3

Functionalization of polymer electrolytes for electrochromic windows

Bayrak Pehlivan, İlknur January 2013 (has links)
Saving energy in buildings is of great importance because about 30 to 40 % of the energy in the world is used in buildings. An electrochromic window (ECW), which makes it possible to regulate the inflow of visible light and solar energy into buildings, is a promising technology providing a reduction in energy consumption in buildings along with indoor comfort. A polymer electrolyte is positioned at the center of multi-layer structure of an ECW and plays a significant role in the working of the ECW. In this study, polyethyleneimine: lithium (bis(trifluoromethane)sulfonimide (PEI:LiTFSI)-based polymer electrolytes were characterized by using dielectric/impedance spectroscopy, differential scanning calorimetry, viscosity recording, optical spectroscopy, and electrochromic measurements. In the first part of the study, PEI:LiTFSI electrolytes were characterized at various salt concentrations and temperatures. Temperature dependence of viscosity and ionic conductivity of the electrolytes followed Arrhenius behavior. The viscosity was modeled by the Bingham plastic equation. Molar conductivity, glass transition temperature, viscosity, Walden product, and iso-viscosity conductivity analysis showed effects of segmental flexibility, ion pairs, and mobility on the conductivity. A connection between ionic conductivity and ion-pair relaxation was seen by means of (i) the Barton-Nakajima-Namikawa relation, (ii) activation energies of the bulk relaxation, and ionic conduction and (iii) comparing two equivalent circuit models, containing different types of Havriliak-Negami elements, for the bulk response. In the second part, nanocomposite PEI:LiTFSI electrolytes with SiO2, In2O3, and In2O3:Sn (ITO) were examined. Adding SiO2 to the PEI:LiTFSI enhanced the ionic conductivity by an order of magnitude without any degradation of the optical properties. The effect of segmental flexibility and free ion concentration on the conduction in the presence of SiO2 is discussed. The PEI:LiTFSI:ITO electrolytes had high haze-free luminous transmittance and strong near-infrared absorption without diminished ionic conductivity. Ionic conductivity and optical clarity did not deteriorate for the PEI:LiTFSI:In2O3 and the PEI:LiTFSI:SiO2:ITO electrolytes. Finally, propylene carbonate (PC) and ethylene carbonate (EC) were added to PEI:LiTFSI in order to perform electrochromic measurements. ITO and SiO2 were added to the PEI:LiTFSI:PC:EC and to a proprietary electrolyte. The nanocomposite electrolytes were tested for ECWs with the configuration of the ECWs being plastic/ITO/WO3/polymer electrolyte/NiO (or IrO2)/ITO/plastic. It was seen that adding nanoparticles to polymer electrolytes can improve the coloring/bleaching dynamics of the ECWs. From this study, we show that nanocomposite polymer electrolytes can add new functionalities as well as enhancement in ECW applications.
4

Caractérisation et optimisation de copolymères à blocs comme électrolytes de batteries lithium métal / Characterization and optimization of block copolymers as electrolytes for lithium metal batteries

Devaux, Didier 12 March 2012 (has links)
Le facteur clé limitant le déploiement des accumulateurs au lithium métal est dû à la formation de dendrites de lithium métallique à l'anode au cours de la recharge. Une solution consiste à employer un électrolyte solide polymère. Un copolymère à blocs est composé d'un ou plusieurs blocs conducteurs à base de POE (poly(oxyde d'éthylène)), linéaire ou branchée, dopés en sel de lithium (LiTFSI) et de blocs de renforts mécaniques qui idéalement mitigent la croissance dendritique. Ces matériaux ont la particularité de s'auto-assembler en domaines nanométriques. Les interfaces entre les domaines génèrent de bonnes propriétés mécaniques à l'échelle macroscopique tandis que localement la dynamique des chaînes POE demeure élevée, assurant la conduction ionique.Ce travail de thèse porte sur les caractérisations physico-chimiques d'électrolytes copolymères, selon différentes architectures (diblocs, triblocs et étoilées) et de l'optimisation de leurs compositions. Une étude fondamentale des polymères dopés en sel a mis en évidence les principaux mécanismes de transport ionique, ainsi que l'impact des groupes terminaux à faible masse molaire sur la conductivité et la viscosité. Cette étape a permis de sélectionner les meilleurs candidats. L'étude de la stabilité des électrolytes vis-à-vis du lithium a été menée. Après avoir formulé des cathodes, des batteries plastiques ont été assemblées et testées avec succès par cyclages galvanostatiques, en température [40°C-100°C] et à des régimes élevés. Enfin, un prototype de 6 mAh a réalisé plus de 400 cycles à des régimes C/4 et D/2 à 100°C. / The key limiting factor for the deployment of Lithium metal batteries is the formation of lithium dendrites at the anode during recharge. One solution consists in the use of a solid polymer electrolyte. A bloc copolymer is composed of one or several conductive blocks based on PEO (poly(ethylene oxide)), linear or branched, doped with a lithium salt (LiTFSI) and reinforced blocks that ideally mitigate the dendritic growth. These materials can self-organize in nanometric domains. The interfaces between the domains generate sufficient mechanical properties at the macroscopic level whilst, locally, the PEO chain dynamics remain high, ensuring ionic conduction.This thesis deals with physico-chemical characterizations of these copolymer electrolytes, with different architectures (diblock, triblock and star shaped), and the optimization of their composition. A fundamental study of doped polymers highlighted the main mechanisms of ionic transport and the impact of the end groups at low molar mass on conductivity and viscosity. This step enabled a selection of the best candidates to be made. A study of the electrolyte stability with respect to lithium was carried out. After the formulation of cathodes, plastic batteries were assembled and successfully tested by galvanostatic cycling under temperature [40°C-100°C] and high regime. Finally, a 6 mAh prototype realised more than 400 cycles under the regime C/4 and D/2 at 100°C.
5

Liquid Organic Electrolytes: Blends of Low Molecular Weight Methoxyoligooxyethylene (MPEGs)/LiTFSI Salt

Alshahrani, Rasha 15 December 2017 (has links)
Blends containing methoxyoligooxyethyleneglycol (MPEGs) (MW 350 and 550) and bis(trifluoromethane)sulfonimide lithium (LiTFSI) salt were prepared by solution blending process using tetrahydrofuran (THF) as a solvent. The ionic conductivity of the blends of different compositions were determined at four temperatures i.e. 25°C, 40°C, 60°C and 70°C. A maximum ionic conductivity value of 3.9x10-3 S cm-1 at 25°C was obtained for the blends containing MPEG-350 at an ethylene oxide to lithium salt ratio of 1:10. The ionic conductivity increases with increasing temperature and shows that the ion transport is aided by the segmental motion of the MPEG chains. 7Li NMR spectroscopy was used to study the nature and dynamics of the salt clusters in the blends
6

Etude de l'interface lithium métal / électrolyte polymère fondu ou gélifié.

Teyssot, Anna 27 January 2005 (has links) (PDF)
Les batteries à électrode lithium métal ont des capacités théoriques élevées, une différence de potentiel importante, des géométries adaptables. Leur développement à l'échelle industrielle est pourtant compromis par l'électrodépôt d'agrégats irréguliers de lithium (dendrites) lors de la recharge de la batterie. La croissance dendritique à faible densité de courant est mal comprise, et semble liée à une mauvaise distribution de la densité de courant locale du fait des inhomogénéités à l'interface lithium/électrolyte. Ce manuscrit présente nos résultats sur des cellules symétriques Li/Electrolyte/Li qui permettent d'étudier simultanément le dépôt et la dissolution du lithium. Ces cellules sont basées sur des systèmes à base de POE+LiTFSI fonctionnant à 80°C, et sur des systèmes à base de PVdF-HFP/POE imbibé en EC:PC+LiTFSI et fonctionnant à température ambiante. Nous avons étudié ces cellules par visualisation in situ de l'espace inter-électrodes, et par spectroscopie d'impédance. Sur des cellules de visualisation à base d'électrolyte polymère fondu chargé en sel coloré, nous avons observé l'évolution des profils d'absorption optique directement liés aux profils de concentration dans l'électrolyte. Sur le système à base d'électrolyte gélifié nous avons constaté des variations locales de densité de courant en cours de polarisation. Par impédance, nous mettons en évidence la présence de deux couches de passivation à l'interface lithium/électrolyte qui évoluent différemment en vieillissement. Lorsqu'on polarise une cellule à courant constant, sa réponse en tension met en évidence la présence d'un milieu peu diffusif à l'interface entre le lithium et l'électrolyte.
7

Fabrication and Characterizations of LAGP/PEO Composite Electrolytes for All Solid-State Lithium-Ion Batteries

Lee, Jeremy J. 07 June 2018 (has links)
No description available.

Page generated in 0.0287 seconds