• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIZING COOPERATIVE ADAPTIVE CRUISE CONTROL WITH SHARED AUTONOMY

Zhang, Hancheng 01 May 2019 (has links)
In this thesis, we present research on synthesizing autonomous driving with shared autonomy using Unity Engine. Adaptive Cruise Control (ACC) is considered as level 1 autonomous vehicle, which has been studied by academia and commercialized by industry. Cooperative Adaptive Cruise Control (CACC) system is an expansion of ACC, in which communication is set up between members to share driving information. Shared autonomy is a subject about human-computer interactivities. In our research, we developed a highly customizable 3D environment. We can simulate various driving scenarios and analyze the performance of different driving methods from human driving to CACC. The result of simulation proves the safety and efficiency of CACC, and the project also provides a potential of assisting the improvement of autonomous vehicles.
2

INVESTIGATION OF THE DYNAMICS OF RAILWAY BOGIES SUBJECTED TO TRACTION / BRAKING TORQUE

Handoko, Yunendar Aryo, yunendar@inka.web.id January 2006 (has links)
The limitations of current simulation packages in addressing the true longitudinal behaviour of railway bogie dynamics during braking/traction has prompted the development of a Rail Bogie Dynamics (RBD) program in this thesis. The RBD program offers novel features for the calculation of the speed profile as a function of the brake torque as well as explicitly determining wheelset angular velocity. With such capability, the speed profile is no longer treated as an input calculated as a priori as required by most of the current simulation systems. The RBD program has been developed using a formulation that includes the wheelset pitch degree of freedom explicitly with a coordinate reference system that is fixed in space and time. The formulation has made the simulation of the bogie dynamics during braking/traction possible in a natural way using the brake/traction torque as the input and the resulting speed profile as the output without any need for working out the speed profile as a priori. Consequently, severe dynamics during braking such as the wheelset skid and the onset of wheel climb derailment can be modelled and critical parameters investigated using the RBD program. The RBD program has been validated, where possible, through a series of simulations using a commercial software package (VAMPIRE). For cases which cannot be simulated by VAMPIRE such as the wheelset skid, a novel experimental program has been designed and commissioned in the Heavy Testing Laboratory of the Central Queensland University as reported in this thesis. One of the possible applications of the RBD program in examining the effect of asymmetric brake shoe force in bogies equipped with one-side push brake shoe arrangement is illustrated in this thesis. It is believed that the model and RBD program will have significant benefit in understanding the true longitudinal behaviour of wagons in suburban passenger trains that operate under braking/ traction torques for most of their travel. Similar studies will also be useful to freight train wagon dynamics during entry and exit of speed restriction zones and tight curves.
3

Modeling of Piezoelectric Tube Actuators

El Rifai, Osamah M., Youcef-Toumi, Kamal 01 1900 (has links)
A new dynamic model is presented for piezoelectric tube actuators commonly used in high-precision instruments. The model captures coupling between motions in all three axes such as bending motion due to a supposedly pure extension of the actuator. Both hysteresis and creep phenomena are included in the overall actuator model permitting modeling nonlinear sensitivity in the voltage to displacement response. Experimental data on hysteresis and creep are presented to support the modeling. Experiments and model predictions show that due to coupling a voltage Vz corresponding to vertical displacement will produce lateral displacement that acts as a disturbance to the main lateral response. The resonance frequency for the lateral dynamics is inherently lower than that of the longitudinal dynamics. Therefore, Vz is expected to contain frequencies that may excite the lateral resonance. Accordingly, this out of bandwidth disturbance will not be well compensated for either in open or closed loop control of the actuator. In order to preserve performance in open loop actuator control and stability and performance in closed loop control, a large reduction in the bandwidth of vertical motion would be required to avoid exciting the first bending mode. / Singapore-MIT Alliance (SMA)
4

Analýza akcelerační a decelerační charakteristiky vozidla / Analysis of acceleration and deceleration characteristics of the vehicle

Treschl, Jakub January 2017 (has links)
This master's thesis designs acceleration and deceleration measurement method by a test drive. It contains also measurement realisation, design of the computational model and acquired data analysis and evaluation.
5

Implementation of Flight Mechanical Evaluation Criteria in an Aircraft Conceptual Design Tool with focus on Longitudinal Motions

Giota, Argyro, Roszkowska, Aleksandra January 2023 (has links)
This report focuses on the utilisation of flight mechanics in the context of aircraftconceptual design to assess stability, control, and motion characteristics. The pri-mary objective is to acquire the equations of motion and implement longitudinalstability and control criteria using Pacelab Aircraft Preliminary Design 8.1, a com-mercial software tool. The equations and criteria employed in this study are derivedfrom an extensive review of relevant literature.By incorporating a dedicated Flight Mechanics chapter within the software, it be-comes possible to evaluate aircraft concepts under varying conditions. To ensureaccuracy and validity, DATCOM+ and OpenVSP were employed for testing andverification purposes.The key aspects covered in this report include flight mechanics, its implementationin Pacelab APD 8.1, determination of aerodynamic derivatives, formulation of equa-tions of motion, and their application to the B747 aircraft model. The emphasis liesin assessing longitudinal stability and control, including specific characteristics suchas the phugoid and short period modes.This report provides valuable insights into the integration of flight mechanics withinthe Pacelab APD 8.1 software for aircraft conceptual design. The results contributeto a better understanding of stability and control parameters and their impact onaircraft performance.
6

Modeling and simulation of vehicle emissions for the reduction of road traffic pollution

Rahimi, Mostafa 03 February 2023 (has links)
The transportation sector is responsible for the majority of airborne particles and global energy consumption in urban areas. Its role in generating air pollution in urban areas is even more critical, as many visitors, commuters and citizens travel there daily for various reasons. Emissions released by transport fleets have an exhaust (tailpipe) and a non-exhaust (brake wears ) origin. Both exhaust and non-exhaust airborne particles can have destructive effects on the human cardiovascular and respiratory systems and even lead to premature deaths. This dissertation aims to estimate the amount of exhaust and brake emissions in a real case study by proposing an innovative methodology. For this purpose, different levels of study have been introduced, including the subsystem level, the system level, the environmental level and the suprasystem level. To address these levels, two approaches were proposed along with a data collection process. First, a comprehensive field survey was conducted in the area of Buonconsiglio Castle and data was collected on traffic and non-traffic during peak hours. Then, in the first approach, a state-of-the-art simulation-based method was presented to estimate the amount of exhaust emissions generated and the rate of fuel consumption in the case study using the VISSIM traffic microsimulation software and Enviver emission modeler at the suprasystem level. In order to calculate the results under different mobility conditions, a total of 18 scenarios were defined based on changes in vehicle speeds and the share of heavy vehicles (HV%) in the modal split. Subsequently, the scenarios were accurately modelled in the simulation software VISSIM and repeated 30 times with a simulation runtime of three hours. The results of the first approach confirmed the simultaneous effects of considering vehicle speed and HV % on fuel consumption and the amount of exhaust emissions generated. Furthermore, the sensitivity of exhaust emissions and fuel consumption to variations in vehicle speed was found to be much higher than HV %. In other words, the production of NOx and VOC emissions can be increased by up to 20 % by increasing the maximum speed of vehicles by 10 km/h. Conversely, increasing the HV percentage at the same speed does not seem to produce a significant change. Furthermore, increasing the speed from 30 km/h to 50 km/h increased CO emissions and fuel consumption by up to 33%. Similarly, a reduction in speed of 20 or 10 km/h with a 100% increase in HV resulted in a 40% and 27% decrease in exhaust emissions per seat, respectively. In the second approach, a novel methodology was proposed to estimate the number of brake particles in the case study. To achieve this goal, a downstream approach was proposed starting from the suprasystem level (microscopic traffic simulation models in VISSIM) and using a developed mathematical vehicle dynamics model at the system level to calculate the braking torques and angular velocities of the front and rear wheels, and proposes an artificial neural network (ANN) as a brake emission model, which has been appropriately trained and validated using emission data collected through more than 1000 experimental tribological tests on a reduced-scale dynamometer at the subsystem level (braking system). Consideration of this multi-level approach, from tribological to traffic-related aspects, is necessary for a realistic estimation of brake emissions. The proposed method was implemented on a targeted vehicle, a dominant SUV family car in the case study, considering real driving conditions. The relevant dynamic quantities of the targeted vehicle (braking torques and angular velocities of the wheels) were calculated based on the vehicle trajectory data such as speed and deceleration obtained from the traffic microsimulation models and converted into braking emissions via the artificial neural network. The total number of brake emissions emitted by the targeted vehicles was predicted for 10 iterations route by route and for the entire traffic network. The results showed that a large number of brake particles (in the order of billions of particles) are released by the targeted vehicles, which significantly affect the air quality in the case study. The results of this dissertation provide important information for policy makers to gain better insight into the rate of exhaust and brake emissions and fuel consumption in metropolitan areas and to understand their acute negative impacts on the health of citizens and commuters.
7

Dinâmica longitudinal : efeitos da geometria de suspensão nas mudanças de atitude da massa suspensa e os esforços nos elementos da suspensão / Longitudinal dynamics : effects of the geometry suspension on the sprung mass attitude and the effort on elements suspensions

Barreto, Marco Antonio Zanussi 27 June 2005 (has links)
Este trabalho tem como objetivo estudar a influência da geometria de suspensão do veículo nas atitudes da massa suspensa. Apresenta um confronto entre obras e autores e está segmentada em três partes; onde na primeira parte são definidos os conceitos básicos como dive, squat, lift, anti-dive, anti-squat, anti-lift e equivalente trailing-arm; na segunda parte são apresentadas as limitações e os novos conceitos definidos por R. S. Sharp e na terceira parte é apresentado o modelo dinâmico bidimensional introduzido por Fu-Cheng Wang. Apresenta um modelo virtual em sistema de multi-corpos desenvolvido no programa ADAMS, com todos os subsistemas que compõe um veículo completo. Inova ao trazer como objeto de estudo um veículo de competição (fórmula SAE) que possui como particularidade o sistema de suspensão push-rod. Surpreende com os resultados obtidos, pois, contrariam os conceitos básicos encontrados na maioria dos livros / This work has objective study the influence of suspension geometry on the sprung mass attitudes. It presents a confrontation among works and authors and this segmented in three parts; where in the first part the basic concepts are defined, dive, squat, lift, anti-dive, anti-squat, anti-lift and equivalent trailing-arm; in the second part the limitations are presented and the new concepts are defined for R. S. Sharp and in the third part are presented the bidimensional dynamic model introduced by Fu-Cheng Wang. It presents a virtual model in system of multi-bodies developed in the program ADAMS, with all the subsystems that composes a complete vehicle. It innovates when bringing such object to study one vehicle of competition (formula SAE) that it has a particularity suspension system push-rod. It surprises with results because it’s opposite of the basic concepts which is present in the majority of books
8

Dinâmica longitudinal : efeitos da geometria de suspensão nas mudanças de atitude da massa suspensa e os esforços nos elementos da suspensão / Longitudinal dynamics : effects of the geometry suspension on the sprung mass attitude and the effort on elements suspensions

Marco Antonio Zanussi Barreto 27 June 2005 (has links)
Este trabalho tem como objetivo estudar a influência da geometria de suspensão do veículo nas atitudes da massa suspensa. Apresenta um confronto entre obras e autores e está segmentada em três partes; onde na primeira parte são definidos os conceitos básicos como dive, squat, lift, anti-dive, anti-squat, anti-lift e equivalente trailing-arm; na segunda parte são apresentadas as limitações e os novos conceitos definidos por R. S. Sharp e na terceira parte é apresentado o modelo dinâmico bidimensional introduzido por Fu-Cheng Wang. Apresenta um modelo virtual em sistema de multi-corpos desenvolvido no programa ADAMS, com todos os subsistemas que compõe um veículo completo. Inova ao trazer como objeto de estudo um veículo de competição (fórmula SAE) que possui como particularidade o sistema de suspensão push-rod. Surpreende com os resultados obtidos, pois, contrariam os conceitos básicos encontrados na maioria dos livros / This work has objective study the influence of suspension geometry on the sprung mass attitudes. It presents a confrontation among works and authors and this segmented in three parts; where in the first part the basic concepts are defined, dive, squat, lift, anti-dive, anti-squat, anti-lift and equivalent trailing-arm; in the second part the limitations are presented and the new concepts are defined for R. S. Sharp and in the third part are presented the bidimensional dynamic model introduced by Fu-Cheng Wang. It presents a virtual model in system of multi-bodies developed in the program ADAMS, with all the subsystems that composes a complete vehicle. It innovates when bringing such object to study one vehicle of competition (formula SAE) that it has a particularity suspension system push-rod. It surprises with results because it’s opposite of the basic concepts which is present in the majority of books

Page generated in 0.0641 seconds