• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic Speech Recognition for low-resource languages using Wav2Vec2 : Modern Standard Arabic (MSA) as an example of a low-resource language

Zouhair, Taha January 2021 (has links)
The need for fully automatic translation at DigitalTolk, a Stockholm-based company providing translation services, leads to exploring Automatic Speech Recognition as a first step for Modern Standard Arabic (MSA). Facebook AI recently released a second version of its Wav2Vec models, dubbed Wav2Vec 2.0, which uses deep neural networks and provides several English pretrained models along with a multilingual model trained in 53 different languages, referred to as the Cross-Lingual Speech Representation (XLSR-53). The small English and the XLSR-53 pretrained models are tested, and the results stemming from them discussed, with the Arabic data from Mozilla Common Voice. In this research, the small model did not yield any results and may have needed more unlabelled data to train whereas the large model proved to be successful in predicting the audio recordings in Arabic and a Word Error Rate of 24.40% was achieved, an unprecedented result. The small model turned out to be not suitable for training especially on languages other than English and where the unlabelled data is not enough. On the other hand, the large model gave very promising results despite the low amount of data. The large model should be the model of choice for any future training that needs to be done on low resource languages such as Arabic.
2

Incorporating Meta Information for Speech Recognition of Low-resource Language / 低資源言語の音声認識のためのメタ情報の活用

SOKY, KAK 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24729号 / 情博第817号 / 新制||情||137(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 黒橋 禎夫, 教授 森 信介 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
3

Low-resource Language Question Answering Systemwith BERT

Jansson, Herman January 2021 (has links)
The complexity for being at the forefront regarding information retrieval systems are constantly increasing. Recent technology of natural language processing called BERT has reached superhuman performance in high resource languages for reading comprehension tasks. However, several researchers has stated that multilingual model’s are not enough for low-resource languages, since they are lacking a thorough understanding of those languages. Recently, a Swedish pre-trained BERT model has been introduced which is trained on significantly more Swedish data than the multilingual models currently available. This study compares both multilingual and Swedish monolingual inherited BERT model’s for question answering utilizing both a English and a Swedish machine translated SQuADv2 data set during its fine-tuning process. The models are evaluated with SQuADv2 benchmark and within a implemented question answering system built upon the classical retriever-reader methodology. This study introduces a naive and more robust prediction method for the proposed question answering system as well finding a sweet spot for each individual model approach integrated into the system. The question answering system is evaluated and compared against another question answering library at the leading edge within the area, applying a custom crafted Swedish evaluation data set. The results show that the fine-tuned model based on the Swedish pre-trained model and the Swedish SQuADv2 data set were superior in all evaluation metrics except speed. The comparison between the different systems resulted in a higher evaluation score but a slower prediction time for this study’s system.
4

Neural maskinöversättning av gawarbati / Neural machine translation for Gawarbati

Gillholm, Katarina January 2023 (has links)
Nya neurala modeller har lett till stora framsteg inom maskinöversättning, men fungerar fortfarande sämre på språk som saknar stora mängder parallella data, så kallade lågresursspråk. Gawarbati är ett litet, hotat lågresursspråk där endast 5000 parallella meningar finns tillgängligt. Denna uppsats använder överföringsinlärning och hyperparametrar optimerade för små datamängder för att undersöka möjligheter och begränsningar för neural maskinöversättning från gawarbati till engelska. Genom att använda överföringsinlärning där en föräldramodell först tränades på hindi-engelska förbättrades översättningar med 1.8 BLEU och 1.3 chrF. Hyperparametrar optimerade för små datamängder ökade BLEU med 0.6 men minskade chrF med 1. Att kombinera överföringsinlärning och hyperparametrar optimerade för små datamängder försämrade resultatet med 0.5 BLEU och 2.2 chrF. De neurala modellerna jämförs med och presterar bättre än ordbaserad statistisk maskinöversättning och GPT-3. Den bäst presterande modellen uppnådde endast 2.8 BLEU och 19 chrF, vilket belyser begränsningarna av maskinöversättning på lågresursspråk samt det kritiska behovet av mer data. / Recent neural models have led to huge improvements in machine translation, but performance is still suboptimal for languages without large parallel datasets, so called low resource languages. Gawarbati is a small, threatened low resource language with only 5000 parallel sentences. This thesis uses transfer learning and hyperparameters optimized for small datasets to explore possibilities and limitations for neural machine translation from Gawarbati to English. Transfer learning, where the parent model was trained on parallel data between Hindi and English, improved results by 1.8 BLEU and 1.3 chrF. Hyperparameters optimized for small datasets increased BLEU by 0.6 but decreased chrF by 1. Combining transfer learning and hyperparameters optimized for small datasets led to a decrease in performance by 0.5 BLEU and 2.2 chrF. The neural models outperform a word based statistical machine translation and GPT-3. The highest performing model only achieved 2.8 BLEU and 19 chrF, which illustrates the limitations of machine translation for low resource languages and the critical need for more data. / VR 2020-01500
5

Interactive Machine Assistance: A Case Study in Linking Corpora and Dictionaries

Black, Kevin P 01 November 2015 (has links) (PDF)
Machine learning can provide assistance to humans in making decisions, including linguistic decisions such as determining the part of speech of a word. Supervised machine learning methods derive patterns indicative of possible labels (decisions) from annotated example data. For many problems, including most language analysis problems, acquiring annotated data requires human annotators who are trained to understand the problem and to disambiguate among multiple possible labels. Hence, the availability of experts can limit the scope and quantity of annotated data. Machine-learned pre-annotation assistance, which suggests probable labels for unannotated items, can enable expert annotators to work more quickly and thus to produce broader and larger annotated resources more cost-efficiently. Yet, because annotated data is required to build the pre-annotation model, bootstrapping is an obstacle to utilizing pre-annotation assistance, especially for low-resource problems where little or no annotated data exists. Interactive pre-annotation assistance can mitigate bootstrapping costs, even for low-resource problems, by continually refining the pre-annotation model with new annotated examples as the annotators work. In practice, continually refining models has seldom been done except for the simplest of models which can be trained quickly. As a case study in developing sophisticated, interactive, machine-assisted annotation, this work employs the task of corpus-dictionary linkage (CDL), which is to link each word token in a corpus to its correct dictionary entry. CDL resources, such as machine-readable dictionaries and concordances, are essential aids in many tasks including language learning and corpus studies. We employ a pipeline model to provide CDL pre-annotations, with one model per CDL sub-task. We evaluate different models for lemmatization, the most significant CDL sub-task since many dictionary entry headwords are usually lemmas. The best performing lemmatization model is a hybrid which uses a maximum entropy Markov model (MEMM) to handle unknown (novel) word tokens and other component models to handle known word tokens. We extend the hybrid model design to the other CDL sub-tasks in the pipeline. We develop an incremental training algorithm for the MEMM which avoids wasting previous computation as would be done by simply retraining from scratch. The incremental training algorithm facilitates the addition of new dictionary entries over time (i.e., new labels) and also facilitates learning from partially annotated sentences which allows annotators to annotate words in any order. We validate that the hybrid model attains high accuracy and can be trained sufficiently quickly to provide interactive pre-annotation assistance by simulating CDL annotation on Quranic Arabic and classical Syriac data.
6

BERTie Bott’s Every Flavor Labels : A Tasty Guide to Developing a Semantic Role Labeling Model for Galician

Bruton, Micaella January 2023 (has links)
For the vast majority of languages, Natural Language Processing (NLP) tools are either absent entirely, or leave much to be desired in their final performance. Despite having nearly 4 million speakers, one such low-resource language is Galician. In an effort to expand available NLP resources, this project sought to construct a dataset for Semantic Role Labeling (SRL) and produce a baseline for future research to use in comparisons. SRL is a task which has shown success in amplifying the final output for various NLP systems, including Machine Translation and other interactive language models. This project was successful in that fact and produced 24 SRL models and two SRL datasets; one Galician and one Spanish. mBERT and XLM-R were chosen as the baseline architectures; additional models were first pre-trained on the SRL task in a language other than the target to measure the effects of transfer-learning. Scores are reported on a scale of 0.0-1.0. The best performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. The best performing Spanish SRL model achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025. A pre-processing method, verbal indexing, was also introduced which allowed for increased performance in the SRL parsing of highly complex sentences; effects were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but still visible even when only used during fine-tuning. / För de allra flesta språken saknas språkteknologiska verktyg (NLP) helt, eller för dem de var i finns tillgängliga är dessa verktygs prestanda minst sagt, sämre än medelmåttig. Trots sina nästan 4 miljoner talare, är galiciska ett språk med brist på tillräckliga resurser. I ett försök att utöka tillgängliga NLP-resurser för språket, konstruerades i detta projekt en uppsättning data för så kallat Semantic Role Labeling (SRL) som sedan användes för att utveckla grundläggande SRL-modeller att falla tillbaka på och jämföra  med i framtida forskning. SRL är en uppgift som har visat framgång när det gäller att förstärka slutresultatet för olika NLP-system, inklusive maskinöversättning och andra interaktiva språkmodeller. I detta avseende visade detta projekt på framgång och som del av det utvecklades 24 SRL-modeller och två SRL-datauppsåttningar; en galicisk och en spansk. mBERT och XLM-R valdes som baslinjearkitekturer; ytterligare modeller tränades först på en SRL-uppgift på ett språk annat än målspråket för att mäta effekterna av överföringsinlärning (Transfer Learning) Poäng redovisas på en skala från 0.0-1.0. Den galiciska SRL-modellen med bäst prestanda uppnådde ett f1-poäng på 0.74, vilket introducerar en baslinje för framtida galiciska SRL-system. Den bästa spanska SRL-modellen uppnådde ett f1-poäng på 0.83, vilket överträffade baslinjen +0.025 som sattes under CoNLL Shared Task 2009. I detta projekt introduceras även en ny metod för behandling av lingvistisk data, så kallad verbalindexering, som ökade prestandan av mycket komplexa meningar. Denna prestandaökning först märktes ytterligare i de scenarier och är en modell både förtränats och finjusterats på uppsättningar data som behandlats med metoden, men visade även på märkbara förbättringar då en modell endast genomgått finjustering. / Para la gran mayoría de los idiomas, las herramientas de procesamiento del lenguaje natural (NLP) están completamente ausentes o dejan mucho que desear en su desempeño final. A pesar de tener casi 4 millones de hablantes, el gallego continúa siendo un idioma de bajos recursos. En un esfuerzo por expandir los recursos de NLP disponibles, el objetivo de este proyecto fue construir un conjunto de datos para el Etiquetado de Roles Semánticos (SRL) y producir una referencia para que futuras investigaciones puedan utilizar en sus comparaciones. SRL es una tarea que ha tenido éxito en la amplificación del resultado final de varios sistemas NLP, incluida la traducción automática, y otros modelos de lenguaje interactivo. Este proyecto fue exitoso en ese hecho y produjo 24 modelos SRL y dos conjuntos de datos SRL; uno en gallego y otro en español. Se eligieron mBERT y XLM-R como las arquitecturas de referencia; previamente se entrenaron modelos adicionales en la tarea SRL en un idioma distinto al idioma de destino para medir los efectos del aprendizaje por transferencia. Las puntuaciones se informan en una escala de 0.0 a 1.0. El modelo SRL gallego con mejor rendimiento logró una puntuación de f1 de 0.74, introduciendo un objetivo de referencia para los futuros sistemas SRL gallegos. El modelo español de SRL con mejor rendimiento logró una puntuación de f1 de 0.83, superando la línea base establecida por la Tarea Compartida CoNLL de 2009 en 0.025. También se introdujo un método de preprocesamiento, indexación verbal, que permitió un mayor rendimiento en el análisis SRL de oraciones muy complejas; los efectos se amplificaron cuando el modelo primero se entrenó y luego se ajustó con los conjuntos de datos que utilizaban el método, pero los efectos aún fueron visibles incluso cuando se lo utilizó solo durante el ajuste.

Page generated in 0.0888 seconds