• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis

Storn, Johannes 01 August 2019 (has links)
Aufgrund der fundamentalen Bedeutung partieller Differentialgleichungen zur Beschreibung von Phänomenen in angewandten Wissenschaften ist deren Analyse ein Kerngebiet der Mathematik. Durch Computer lassen sich die Lösungen für eine Vielzahl dieser Gleichungen näherungsweise bestimmen. Die dabei verwendeten numerischen Verfahren sollen auf möglichst exakte Approximationen führen und deren Genauigkeit verifizieren. Die Least-Squares Finite-Elemente-Methode (LSFEM) und die unstetige Petrov-Galerkin (DPG) Methode sind solche Verfahren. Sie werden in dieser Dissertation untersucht. Der erste Teil der Arbeit untersucht die Genauigkeit der mittels LSFEM berechneten Näherungen. Dazu werden Eigenschaften der zugrundeliegenden Differentialgleichungen mit den Eigenschaften der LSFEM kombiniert. Dies zeigt, dass die Abweichung der berechneten Näherung von der exakten Lösung einem berechenbaren Residuum asymptotisch entspricht. Ferner wird ein Verfahren zu Berechnung einer garantierten oberen Fehlerschranke eingeführt. Während etablierte Fehlerschätzer den Fehler signifikant überschätzt, zeigen numerische Experimente eine äußerst geringe Überschätzung des Fehlers mittels der neuen Fehlerschranke. Die Analyse der Fehlerschranken für das Stokes-Problem offenbart ein Beziehung der LSFEM und der LBB Konstanten. Diese Konstante ist entscheidend für die Existenz und Stabilität von Lösungen in der Strömungslehre. Der zweite Teil der Arbeit nutzt diese Beziehung und entwickelt ein auf der LSFEM basierendes Verfahren zur numerischen Berechnung der LBB Konstanten. Der dritte Teil der Arbeit untersucht die DPG Methode. Dabei werden existierende Anwendungen der DPG Methode zusammengefasst und analysiert. Diese Analyse zeigt, dass sich die DPG Methode als eine leicht gestörte LSFEM interpretieren lässt. Diese Interpretation erlaubt die Anwendung der Resultate aus dem ersten Teil der Arbeit und ermöglicht dadurch eine genauere Untersuchung existierender und die Entwicklung neuer DPG Methoden. / The analysis of partial differential equations is a core area in mathematics due to the fundamental role of partial differential equations in the description of phenomena in applied sciences. Computers can approximate the solutions to these equations for many problems. They use numerical schemes which should provide good approximations and verify the accuracy. The least-squares finite element method (LSFEM) and the discontinuous Petrov-Galerkin (DPG) method satisfy these requirements. This thesis investigates these two schemes. The first part of this thesis explores the accuracy of solutions to the LSFEM. It combines properties of the underlying partial differential equation with properties of the LSFEM and so proves the asymptotic equality of the error and a computable residual. Moreover, this thesis introduces an novel scheme for the computation of guaranteed upper error bounds. While the established error estimator leads to a significant overestimation of the error, numerical experiments indicate a tiny overestimation with the novel bound. The investigation of error bounds for the Stokes problem visualizes a relation of the LSFEM and the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. This constant is a key in the existence and stability of solution to problems in fluid dynamics. The second part of this thesis utilizes this relation to design a competitive numerical scheme for the computation of the LBB constant. The third part of this thesis investigates the DPG method. It analyses an abstract framework which compiles existing applications of the DPG method. The analysis relates the DPG method with a slightly perturbed LSFEM. Hence, the results from the first part of this thesis extend to the DPG method. This enables a precise investigation of existing and the design of novel DPG schemes.
2

A Comparison of Least-Squares Finite Element Models with the Conventional Finite Element Models of Problems in Heat Transfer and Fluid Mechanics

Nellie Rajarova, 2009 May 1900 (has links)
In this thesis, least-squares based finite element models (LSFEM) for the Poisson equation and Navier-Stokes equation are presented. The least-squares method is simple, general and reliable. Least-squares formulations offer several computational and theoretical advantages. The resulting coefficient matrix is symmetric and positive-definite. Using these formulations, the choice of approximating space is not subject to any compatibility condition. The Poisson equation is cast as a set of first order equations involving gradient of the primary variable as auxiliary variables for the mixed least-square finite element model. Equal order C0 continuous approximation functions is used for primary and auxiliary variables. Least-squares principle was directly applied to develop another model which requires C1continous approximation functions for the primary variable. Each developed model is compared with the conventional model to verify its performance. Penalty based least-squares formulation was implemented to develop a finite element for the Navier Stokes equations. The continuity equation is treated as a constraint on the velocity field and the constraint is enforced using the penalty method. Velocity gradients are introduced as auxiliary variables to get the first order equivalent system. Both the primary and auxiliary variables are interpolated using equal order C0 continuous, p-version approximation functions. Numerical examples are presented to demonstrate the convergence characteristics and accuracy of the method.
3

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.0449 seconds