1 |
Low power, high efficiency Class D amplifiersBurrow, Stephen George January 2002 (has links)
No description available.
|
2 |
Modeling an Evolving Basin within an Operational Lumped Hydrologic Model by Investigating the Reasons for the Change and Applying a Proper Model Parameter SetCostanza, Katelyn Ermon 11 May 2013 (has links)
This study applies the Sacramento Soil Moisture Accounting Model (SAC-SMA)model to the Upper Black Creek Basin, Mississippi and attempts to improve operational lumped hydrologic model performance. The SAC-SMA is a lumped continuous soil moisture model which is typically calibrated continuously over time to all ranges in flow observed during the life of the gauge except when anthropogenic influences warrant historical data irrelevant. This study shows that persistent land use signatures are evident in the historical data indicating a shorter period of record for calibration is appropriate. This study also quantifies the error introduced to the operational model by inputting radar-derived precipitation estimates during forecast operations while Thiessen gauge weighted estimates are used to calibrate model parameters. Radar derived precipitation was used to calibrate the SAC-SMA model parameters for a shorter period of record than that used in the current operational set. The correlation coefficient improved 5 percent from 86 percent to 91 percent.
|
3 |
Hybrid modelling of machine tool axis drives.Whalley, R., Ebrahimi, Kambiz M., Abdul-Ameer, A.A. January 2005 (has links)
No / The x-axis dynamics of a milling machine where the workpiece and saddle are mounted on supporting slides is considered. A permanent magnet motor, lead screw, ball nut and bearings are employed as the machine, traverse actuator mechanism. Hybrid, distributed¿lumped parameter methods are used to model the machine tool x-axis drive system. Inclusion of the spatial configuration of the drive generates the incident, travelling and reflected vibration signature of the system. Lead screw interactive torsion and tension loading, which is excited by cutting and input disturbance conditions, is incorporated in the modelling process. Measured and results from simulation exercises are presented in comparative studies enabling the dynamic characteristics of the machine to be identified under, no load and with the application of cyclic, cutting force disturbances. The effect of the lead screw length, cutting speed and hence the load disturbance frequency are examined and the resulting performance accuracy is commented upon.
|
4 |
High aspect ratio microstructure couplerSchaffer, Melissa Dawn 14 March 2011
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p>
<p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 µm tall nickel structures with capacitance gap widths of 6 µm.</p>
<p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p>
<p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p>
<p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
|
5 |
Filtros de microondas basados en metamateriales y en resonadores concentradosBonache Albacete, Jordi 26 January 2007 (has links)
Recientemente se ha abierto un nuevo campo de investigación en el área del electromagnetismo aplicado y de la ingeniería de microondas basado en el control de las propiedades electromagnéticas de ciertas estructuras periódicas artificiales conocidas como metamateriales. Debido a que las celdas constitutivas de este tipo de estructuras presentan unas dimensiones muy reducidas en términos de longitud de onda es posible diseñar, en base a este concepto, dispositivos que combinen un gran nivel de compactación y elevadas prestaciones. En esta tesis se han utilizado las propiedades de dichos medios para la implementación de filtros de microondas en tecnología planar. Particularmente se han desarrollado técnicas de síntesis que permiten el diseño de filtros con características controlables, en términos de ancho de banda, rizado en la banda de paso, colocación de ceros de transmisión en la banda de rechazo, etc. En este documento se pueden encontrar varios ejemplos de aplicación de estas técnicas, dando lugar a varios prototipos con respuestas en varios rangos de frecuencia, que van desde respuestas de banda estrecha hasta respuestas ultra anchas. / In the last years, a new research field in the area of applied electromagnetism and microwave engineering based on the control of electromagnetic properties of artificial structures has taken a great interest. These structures are known as metamaterials. Due to the small dimensions of its constitutive cells it is possible to design, based on this concept, devices that combine high performance and compact dimensions. This thesis concerns the application of metamaterial technology to the synthesis of microwave filters in planar technology. In this document can be found a design methodology for each cell of the structure according to the desired frequency response of the filter (bandwidth, pass band ripple, location of transmission zeroes, etc). This methodology is also applicable to the design of filters with standard frequency responses (Chebyshev, Butterworth, etc). The theoretical work is also supported with experimental results of several prototypes with different bandwidths, from narrow band responses to ultra wide band filters.
|
6 |
High aspect ratio microstructure couplerSchaffer, Melissa Dawn 14 March 2011 (has links)
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p>
<p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 µm tall nickel structures with capacitance gap widths of 6 µm.</p>
<p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p>
<p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p>
<p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
|
7 |
Lumped parameter thermal modelling for UK domestic buildings based on measured operational dataDimitriou, Vanda January 2016 (has links)
The development and use of thermal models is an integral part of the design process in existing buildings due for refurbishment. Energy predictions for existing buildings are often based on models which assume thermal property values of the building construction elements. However, once built, the actual thermal properties may differ significantly from their estimated values. Possible reasons include thermal bridging, material distortion and moisture content, sub-standard construction on-site and unavailability of construction details. The uncertainties can be reduced if the modelling process can also make use of operational measurements, such as the fuel use and internal temperatures, which have been recorded in the building during operation. To make use of operational data, performance-based models can be used. Performance-based models rely on measured data for the development of the model s architecture and for informing the estimation of the model parameters that would otherwise be based on the modeller s assumptions of the building s characteristics. One solution to the challenge of using performance-based models for existing buildings is to use the Lumped Parameter modelling approach. The Lumped Parameter modelling technique is often used for performance-based modelling of existing buildings due to the moderate knowledge of the building s physical properties required and the limited operational data needed for model training. This thesis investigates the potential of performance-based modelling techniques for existing UK domestic buildings, based on the Lumped Parameter thermal modelling technique, and the use of measured operational data to inform the model structure and parameters. Operational data have been collected in 20 homes as part of the REFIT project, an EPSRC-funded research project on Smart Meters and Smart Homes (REFIT, 2016). This thesis explores 11 houses from the REFIT dataset and, in particular, the temperature, gas and electricity measurements from the participating households, and develops whole-house and sub-system performance-based models using the Lumped Parameter technique. The suitability of simple performance-based Lumped Parameter models in representing typical UK domestic buildings using mainstream operational data such as temperatures and gas consumption measurements is explored. This thesis concludes on the adequacy of the operational data as measured. High correlations (>0.9) between whole-house average indoor temperatures and individual room air temperature measurements prove the use of averages adequate for representing the main rooms of the houses, whereas individual representation of the house s main rooms in use in the same model can prove challenging. A similar result is observed for whole-house radiator representation and the individual radiators. The relationships between the operational data is explored to inform the model structure and to identify collinearity and multi collinearity in the measurements. In terms of whole-house modelling, when using constraints for the parameter values during the model calibration to the measured data the resulting model parameters can be realistic and a good agreement to the measured data can be achieved (on average an RMSE of 1.03 for air temperature). The most significant parameters affecting the mean value of internal air temperatures are the external envelope resistance Re, the non-inertia elements (e.g. windows and doors) resistance, the window area for solar gains, boiler efficiency and the infiltration rate. The indoor air and internal element heat capacitance had the greatest impact on the swing in the internal air temperature (a 75% decrease in the capacitance value resulted in a 190.70% increase in the standard deviation value on average across the 11 houses). The building envelope heat capacitance and the envelope node positioning were the two parameters with the least impact on the model goodness of fit (a 75% decrease in capacitance and a value of 0.9 in envelope node positioning resulted in a 2.57% and 6.68% increase respectively in the RMSE on average across all 11 houses). Finally, the heating system representation using the Lumped Parameter model showed that the whole-house gas consumption data at the meter level, consisting of gas used for space heating as well as other purposes, is inadequate to drive the heating system model. A temperature threshold (e.g. of 1oC) indicating model overprediction can be used to remove the time-stamps of mixed use gas consumption from the model calibration. The heating system model can then be used to quantify gas consumption for space heating and non-space heating uses. In the 11 houses under study, 82.96% of the total gas consumption served for space heating, with 17.04% serving for other non-space heating purposes.
|
8 |
High fidelity control and simulation of a three degrees-of-freedom wafer handling robotBabayan, Elaina Noelle 07 January 2016 (has links)
Wafer handling robotics are critical in semiconductor manufacturing to enable tight control of temperature, humidity, and particle contamination during processing. Closed-loop dynamic modeling during the robot design process ensures designs meet throughput and stability specifications prior to prototype hardware purchase. Dynamic models are also used in model-based control to improve performance. This thesis describes the generation and mathematical verification of a dynamic model for a three degrees-of-freedom wafer handling mechanism with one linear and two rotary axes. The dynamic plant model is integrated with motion and motor controller models, and the closed-loop performance is compared with experimental data. Models with rigid and flexible connections are compared, and the flexible connection models are shown to overall agree better with a measured step response. The simulation time increase from the addition of flexible connections can be minimized by modeling only the component stiffnesses that impact the closed-loop mechanism response. A method for selecting which elements to include based on controller bandwidth is presented and shown to significantly improve simulation times with minimal impact on model predictive performance.
|
9 |
Dynamic Temperature Model of an Automatic TransmissionZhang, Yao January 2019 (has links)
This report presents the development of a dynamic temperature model for an automatic transmission in a Volvo Cars passenger vehicle. The model should simulate the oil to cooler temperature and flow from the transmission. A mathematical approach to use lumped masses for different parts of the transmission was used. To tune the response of the lumped masses and heat transfer coefficients; temperature measurements were done on a vehicle in a chassis dyno. To verify the model, simple drive cycles were performed with temperature measurement in the same chassis dyno and on the same vehicle. The verification on the model shows that the model can simulate the behavior of a transmission with an error of 2.5 °C during normal behavior and 6.5 °C for a few minutes when a sudden change in the temperature from the cooler have a large transient increase. Because of this, the model is considered to be fairly accurate. However, in order to make the model compatible with Volvo Cars existing simulation software, Vsim, a "cooler model" has to be created.
|
10 |
Macromodelling of MicrosystemsWestby, Eskild R. January 2004 (has links)
<p>The aim of this work has been to develop new knowledge about macromodelling of microsystems. Doing that, we have followed two different approaches for generating macromodels, namely model order reduction and lumped modelling. The latter is a rather mature method that has been widely recognized and used for a relatively long period of time. Model order reduction, on the other hand, is a relatively new area still in rapid development. Due to this, the parts considering reduced order modelling is strongly biased towards methodology and concepts, whereas parts on lumped modelling are biased towards systems and devices.</p><p>In the first part of this thesis, we focus on model order reduction. We introduce some approaches for reducing model order for linear systems, and we give an example related to squeeze-film damping. We then move on to investigate model order reduction of nonlinear systems, where we present and use the concept of invariant manifolds. While the concept of invariant manifolds is general, we utilize it for reducing models. An obvious advantage of using invariant manifold theory is that it offers a conceptually clear understanding of effects and behaviour of nonlinear system.</p><p>We exemplify and investigate the accuracy of one method for identifying invariant manifolds. The example is based on an industrialized dual-axis accelerometer.</p><p>A new geometrical interpretation of external forcing, relating to invariant manifolds, is presented. We show how this can be utilized to deal with external forcing in a manner consistent with the invariance property of the manifold. The interpretation also aids in reducing errors for reduce models.</p><p>We extend the asymptotic approach in a manner that makes it possible to create design-parameter sensitive models. We investigate an industrialized dual-axis accelerometer by means of the method and demonstrate capabilities of the method. We also discuss how manifolds for nonlinear dissipative systems can be found.</p><p>Focusing on lumped modelling, we analyse a microresonator. We also discuss the two analogies that can be used to build electrical equivalents of mechanical systems. It is shown how the f → V analogy, linking velocity to voltage, is the natural choice. General properties of lumped modelling are investigated using models with varying degrees of freedom.</p><p>Finally, we analyse an electromagnetic system, intended for levitating objects, and we demonstrate the scaling effects of the system. Furthermore, we prove the intrinsic stability of the system, although the floating disc will be slightly tilted. This is the first analysis done assessing the stability criterions of such a systems. The knowledge arising from the analysis gives strong indications on how such a system can be utilized, designed, and improved.</p>
|
Page generated in 0.0411 seconds