• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 19
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 45
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sectm1a Deficiency Aggravates Inflammation-Triggered Cardiac Dysfunction Through Disruption of LXRa Signaling in Macrophages

Li, Yutian 15 October 2020 (has links)
No description available.
22

Effects of Synthetic Ligands onHeterodimer Pairs Regarding Full-Length Human PPARa, RXRa and LXRa

Delman, Emily 26 August 2016 (has links)
No description available.
23

NUCLEAR RECEPTORS AS THERAPEUTIC TARGETS FOR ALZHEIMER’S DISEASE

Courtney, Rebecca 08 February 2017 (has links)
No description available.
24

Regulation of intestinal cholesterol transport and metabolism by high glucose levels = Régulation intestinale du transport et du métabolisme du cholestérol par le glucose

Ravid Leibovici, Rosa Zaava January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
25

Caractérisation de nouvelles cibles de LXR et impact sur le métabolisme lipidique et l'athérosclérose / Characterization of new LXR target genes and consequences on lipid metabolism and atherosclerosis

Varin, Alexis 21 October 2014 (has links)
Les récepteurs nucléaires LXRα et LXRβ sont activés par la fixation de dérivés oxygénés du cholestérol. Ils régulent l’expression de nombreux gènes appartenant au métabolisme du cholestérol et des acides gras, et jouent un rôle important dans l’inflammation et l’immunité innée. L’activation de LXR inhibe le développement de l’athérosclérose, en augmentant l’efflux de cholestérol des macrophages ainsi que le transport inverse jusqu’au foie et l’excrétion biliaire. De plus, LXR diminue la biosynthèse et la captation du cholestérol dans les tissus périphériques. Enfin, les agonistes synthétiques de LXR administrés à des souris diminuent significativement l’inflammation dans les lésions athérosclérotiques, notamment en inhibant la sécrétion de certaines cytokines inflammatoires. Néanmoins LXR régule également la lipogenèse et la synthèse d’acides gras mono-insaturés, et l’administration d’agonistes de LXR s’accompagne également d’effets indésirables liés à cette régulation, comme une accumulation dérégulée d’acides gras dans le foie et une augmentation du taux de LDLs circulantes. Plusieurs autres mécanismes restent encore à être explorés, comme la synthèse d’acides gras polyinsaturés et les conséquences sur le métabolisme cellulaire. Nos travaux identifient une nouvelle voie régulée entièrement par LXR, le métabolisme des acides gras polyinsaturés. Le récepteur nucléaire LXR régule l’ensemble des enzymes FADS1, FADS2 et ELOVL5, responsables de la synthèse d’acides gras polyinsaturés oméga-6 et oméga-3. Cette régulation s’accompagne d’une incorporation d’acide arachidonique dans les phospholipides, via la régulation de LPCAT3, ce qui prépare les macrophages à une synthèse accrue de dérivés inflammatoires issus de l’acide arachidonique, comme la Prostaglandine E2, suite à une stimulation au lipopolysaccharide. La régulation de cette voie par LXR a également un effet sur le développement de l’athérosclérose, augmentant les taux d’acides gras polyinsaturés oméga-6 et oméga-3 dans les plaques d’athérome. Nos résultats montrent donc que LXR régule la synthèse des acides gras polyinsaturés en plus des acides gras mono-insaturés et de la lipogenèse et que cette régulation a des conséquences sur le profil lipidique des macrophages in vitro et in vivo ainsi que sur leur réponse inflammatoire. / The nuclear receptors LXRα and LXRβ are activated by oxygenated metabolites of cholesterol. They regulate the expression of numerous genes belonging to cholesterol and fatty acids metabolism, and play a central role in inflammation and innate immunity. LXR activation inhibits atherosclerosis development, by increasing cholesterol efflux from macrophages as well as reverse cholesterol transport and biliary excretion. In addition, LXR decreases cholesterol uptake and biosynthesis. Synthetic LXR agonists fed to mice significantly decrease inflammation in atherosclerotic lesions, by inhibiting several inflammatory cytokines. However, LXR also regulate lipogenesis and monounsaturated fatty acids synthesis, and LXR agonists supplementation is accompanied by side effects due to this regulation, such as a deregulated accumulation of fatty acids in the liver and an increase in circulating LDLs. Other mecanisms still need to be characterized, such as polyunsaturated fatty acids synthesis and the consequences on cell metabolism. Our work identify a new pathway regulated by LXR, the metabolism of polyunsaturated fatty acids. The nuclear receptor LXR regulates all enzymes responsible for omega-6 and omega-3 polyunsaturated fatty acids synthesis, FADS1, FADS2 and ELOVL5. This regulation is accompanied by an increase in arachidonic acid incorporation in phospholipids, via LPCAT3 regulation, which subsequently primes human macrophages for an increased inflammatory metabolites secretion derived from arachidonic acid, such as Protaglandin E2, following a LPS stimulation. The regulation of this pathway by LXR has an effect on atherosclerosis, increasing omega-6 and omega-3 ployunsaturated fatty acids in atheroma plaques. Our results show therefore that LXR regulates polyunsaturated fatty acids synthesis in addition to monounsaturated fatty acids and lipogenesis, and that this regulation has direct consequences on lipid profile of macrophages in vitro and in vivo as well as on their inflammatory response.
26

Efeito de hipolipemiantes sobre a expressão de genes envolvidos no transporte reverso do colesterol / Statin effects on expression of genes involved in reverse cholesterol transport

Genvigir, Fabiana Dalla Vecchia 08 September 2011 (has links)
A eficácia das estatinas em reduzir o risco de eventos coronarianos não é completamente explicada por seus efeitos em diminuir colesterol de lipoproteína de baixa densidade (LDL-C). Um dos seus efeitos adicionais pode ser decorrente da modificação na concentração de lipoproteína de alta densidade (HDL), reconhecida como ateroprotetora, principalmente por seu papel no transporte reverso do colesterol (TRC). Os transportadores de membrana do tipo ATP-binding cassette, ABCA1 e ABCG1, e o scavenger receptor BI (SRBI) são proteínas importantes envolvidas no TRC e seus genes são regulados por vários fatores de transcrição, entre eles os liver-x-receptors (LXRs). Com a finalidade de avaliarmos os efeitos dos hipolipemiantes sobre expressão dos transportadores ABC e do receptor SRBI, a expressão de RNAm do ABCA1, ABCG1, SCARB1, NR1H3 (LXR&#945;) e NR1H2 (LRX&#946;) foi avaliada por PCR em tempo real em células das linhagens HepG2 (origem hepática) e Caco-2 (origem intestinal) tratadas com atorvastatina ou sinvastatina (10 µM) e/ou ezetimiba (até 5 µM) por até 24 horas. Além disso, a expressão desses genes também foi avaliada em células mononucleares do sangue periférico (CMSP) de 50 pacientes normolipidêmicos (NL) e 71 hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4semanas, n=48) ou sinvastatina e/ou ezetimiba (10mg/dia/4 ou 8 semanas, n=23). A possível associação entre os polimorfismos ABCA1 C-14T e R219K e a expressão de RNAm em CMSP também foi avaliada por PCR-RFLP. O SCARB1 foi o gene mais expresso nas células HepG2 e Caco-2, seguido por NR1H2, NR1H3, ABCG1 e ABCA1 em HepG2 ou por ABCA1 e ABCG1 em Caco-2. O tratamento com estatinas (1 ou 10 µM) ou ezetimiba (5 µM), por 12 ou 24 horas, aumentou a expressão de RNAm do ABCG1, mas não de ABCA1 e SCARB1, em células HepG2. Ainda nesta linhagem, o aumento na transcrição dos genes NR1H2 e NR1H3 foi observado somente com a maior concentração de atorvastatina (10 µM) e, ao contrário, o tratamento com ezetimiba causou redução na transcrição de NR1H2, sem alteração de NR1H3. Em células Caco-2, o tratamento com atorvastatina ou sinvastatina por 12 ou 24 horas reduziu a quantidade do transcrito ABCA1 e não alterou a expressão do SCARB1 e do ABCG1, embora, para este último, tenha havido uma tendência à diminuição da expressão após tratamento com sinvastatina (p=0,07). Após tratamento com ezetimiba isolada (até 5 µM) nenhuma alteração de expressão de RNAm foi observada em células Caco-2; no entanto, após 24 horas de tratamento com sinvastatina e ezetimiba, foi reduzida a taxa de transcrição de ABCA1 e ABCG1, mas não de SCARB1. Ao contrário das linhagens celulares, em CMSP os genes NR1H2 e ABCG1 foram os mais expressos, seguidos pelos genes SCARB1 e ABCA1 e, finalmente, pelo NR1H3. Indivíduos HC tiveram maior expressão basal de NR1H2 e NR1H3, mas não de outros genes, quando comparados aos NL (p<0,05). Além disso, nos indivíduos HC, a expressão basal de ABCA1 foi maior em portadores do alelo -14T do polimorfismo ABCA1 -14C>T quando comparados aos portadores do genótipo -14CC (p=0,034). O tratamento com estatinas, com ezetimiba ou com a terapia combinada diminuiu a transcrição de ABCA1 e ABCG1. Para o SCARB1, NR1H2 e NR1H3, nenhuma alteração de expressão de RNAm em CMSP foi detectada após os tratamentos in vivo. Após todas as fases de tratamento, ABCA1 e ABCG1 e também NR1H2 e NR1H3 foram significativamente correlacionados entre si, mas nenhuma correlação com perfil lipídico sérico foi relevante. Coletivamente, esses resultados dão indícios de que os hipolipemiantes analisados (estatinas e ezetimiba) têm um importante papel na regulação da expressão de genes envolvidos no transporte reverso do colesterol e sugerem a existência de regulação tecido-específica para os dois transportadores ABC. Além disso, o efeito das estatinas ou da ezetimiba sobre a expressão do ABCA1, do ABCG1 ou do SCARB1 não sofreu influencia de alterações diretas da transcrição dos LXRs. / The efficacy of statins in reducing the risk of coronary events is not completely explained by their effects in decreasing cholesterol low-density lipoprotein (LDL-C). One of their additional effects may result from the change in concentration of high-density lipoprotein (HDL), recognized as atheroprotective, mainly for the role in reverse cholesterol transport (RCT). The membrane transporters, as ATP-binding cassette, ABCA1 and ABCG1, and scavenger receptor BI (SRBI) are important proteins involved in the RCT and their genes are regulated by various transcription factors, including the liver-X-receptors (LXRs) . In order to evaluate the effects of lipid lowering on expression of ABC transporters and SRBI receptor, the mRNA expression of ABCA1, ABCG1, SCARB1, NR1H3 (LXR&#945;) and NR1H2 (LRX&#946;) was assessed by real time PCR in HepG2 (hepatic origin) and Caco-2 (intestinal origin) cells treated with atorvastatin or simvastatin (10 µM) and/or ezetimibe (up to 5 µM) for 24 hours. Furthermore, the expression of these genes was evaluated in peripheral blood mononuclear cells (PBMC) of 50 normolipidemic (NL) and 71 hypercholesterolemic (HC) patients treated with atorvastatin (10mg/d/4 weeks, n = 48) or simvastatin and/or ezetimibe (10mg/d/4 or 8 weeks, n = 23). The possible association between ABCA1 C-14T and R219K polymorphisms and mRNA expression in PBMC was also evaluated by PCR-RFLP. SCARB1 was the most expressed in HepG2 and Caco-2 cells, followed by NR1H2, NR1H3, ABCG1 and ABCA1 in HepG2 or by ABCG1 and ABCA1 in Caco-2. The treatment with statins (1 or 10 µM) or ezetimibe (5 µM) for 12 or 24 hours, increased mRNA expression of ABCG1 but not ABCA1 and SCARB1 in HepG2 cells. Moreover, in HepG2 cells, atorvastatin also upregulated NR1H2 and NR1H3 only at 10.0 &#181;M, meanwhile ezetimibe downregulated NR1H2 but did not change NR1H3 expression. In Caco-2 cells, atorvastatin or simvastatin treatment for 12 or 24 hours reduced the amount of ABCA1 transcript and did not alter the ABCG1 and SCARB1 expressions, despite the tendency to decrease ABCG1 mRNA expression after simvastatin treatment (p = 0.07). After treatment with ezetimibe alone (up to 5 &#181;M) no change in mRNA expression was observed in Caco-2 cells; however, after 24 hours- simvastatin and ezetimibe treatments decreased the transcription of ABCA1 and ABCG1, but not of SCARB1. Unlike cell lines, in PBMC, NR1H2 and ABCG1 were the most expressed, followed by SCARB1 and ABCA1 and finally by the NR1H3. HC patients showed higher NR1H2 and NR1H3 basal expressions, but not of other genes, compared to NL (p <0.05). Moreover, in HC individuals, the ABCA1 basal expression was higher in individuals carrying -14T allele of -14C> T polymorphism when compared with -14CC carriers (p = 0.034). Treatment with statins, ezetimibe, or combined therapy downregulated ABCA1 and ABCG1 expression. For SCARB1, NR1H2 and NR1H3, no change in mRNA expression in PBMC was detected after treatments. After all phases of treatment, ABCA1 and ABCG1 as well as NR1H2 and NR1H3 were significantly correlated, but no correlation with serum lipid profile was relevant. Collectively, these results provide evidences that the lipid lowering (statins and ezetimibe) have an important role in mRNA expression regulation of genes involved in reverse cholesterol transport and suggest the existence of tissue-specific regulation for the ABC transporters. Furthermore, the effect of statins or ezetimibe on ABCA1, ABCG1 or SCARB1 expression was not directly influenced by changes of LXR transcription.
27

Les "Liver X Receptors" : modulateurs des fonctions des cellules dendritiques plasmocytoïdes et leur contrepartie leucémique / Liver X receptors as modulators of plasmacytoid dentritic cell functions and thier leukemic counterpart

Ceroi, Adam 14 December 2015 (has links)
Chaque cadre doit contenir un résumé de 1700 caractères maximum, espaces compris. En cas de dépassement, la coupure sera automatique. Le doctorant adresse son texte sous forme électronique selon les recommandations de la bibliothèqueLes "Liver X receptors " (LXR) sont des récepteurs nucléaires impliqués dans Phoméostasie du cholestérol. Dans les macrophages, la stimulation de la voie LXR accroît la clairance des corps apoptotiques et réprime la réponse inflammatoire. Les LXR inhibent également la prolifération et la survie de cellules malignes.L'activation des LXR dans les cellules dendritiques plasmocytoïdes (PDG) augmentent la clairance des microparticules (MP), via l'induction du récepteur au phosphatidylsérines BAIL L'internalisation des MP active la voie NF-KB ou la voie LXR pour des MP dérivées respectivement, de cellules endothéliales (EMP) ou plaquettaires (PMP). Ces deux voies de signalisation se réprimaient mutuellement, déterminant la réponse inflammatoire des PDG.La contrepartie leucémique des PDC (LPDC) est à l'origine d'une leucémie aiguë agressive, la BPDCN. Nous avons observé une dérégulation de Phoméostasie du cholestérol dans ces cellules. L'activation de la voie LXR entraine un efflux du cholestérol associé à un effet cytotoxique et antiprolifératif. Ils peuvent impliquer : la répression de NF-KB ; ainsi que l'inhibition de la signalisation induite par le facteur de survie IL-3 (incluant STAT5 et Akt). L'utilisation d'un modèle xénogénique murin de BPDCN traitée par agoniste LXR montre une diminution de la cytopénie induite par les LPDC et des infiltrats spléniques et médullaires.Ces travaux démontrent la fonctionnalité de la voie LXR dans les PDC et LPDC, ainsi qu'une régulation croisée avec NF-KB. L'activation de cette voie a démontré son implication dans la clairance des MP et la régulation de la réponse inflammatoire des PDC, ainsi qu'un effet anti-leucémique sur les LPDC. / Nuclear Liver X Receptors (LXR) are involved in cholesterol homeostasis. In macrophages, LXR promote apoptotic body/cell clearance and repress inflammatory responses. LXR are also shown to inhibit proliferation and survival of malignant cells.In plasmacytoid dendritic cells (PDC), LXR stimulation increases microparticle (MP) engulfment via the increased expression of the PS receptor, BAIL MP engulfment induced NF-icB or LXR activation, depending on the endothelial (EMP) or platelet (PMP) origin of MP, respectively. Overall, we show a crosstalk involving LXR and NF-KB, which dictates the inflammatory fate of PDC engulfing MP.The leukemic PDC counterpart (LPDC) is responsible of an aggressive hematologic malignancy, called blastic plasmacytoid dendritic cell neoplasm (BPDCN). In contrast to healthy PDC and other acute leukemias (including lymphoid and myeloid acute leukemias), we report here a specific downregulation of cholesterol homeostasis-related genes in LPDC. LXR pathway activation increases cholesterol efflux and inhibits cell proliferation and survival. This may involve: inhibition of NF-KB signaling pathway and of signaling pathways induced by the survival factor IL-3 (involving Akt and STAT5). Using a xenogeneic mouse model of BPDCN, LXR agonist treatment reduces BPDCN-induced cytopenia as well as bone marrow and spleen LPDC infiltration.Overall, we demonstrate that LXR receptors are functional in PDC and LPDC and are involved in a cross-regulation mechanism with NF-KB. LXR receptors promote MP clearance and control inflammatory responses in PDC, as well as exert an anti-leukemic therapeutic effect in BPDCN via several mechanisms, including cholesterol efflux.
28

Regulation of intestinal cholesterol transport and metabolism by high glucose levels = Régulation intestinale du transport et du métabolisme du cholestérol par le glucose

Ravid Leibovici, Rosa Zaava January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
29

Efeito de hipolipemiantes sobre a expressão de genes envolvidos no transporte reverso do colesterol / Statin effects on expression of genes involved in reverse cholesterol transport

Fabiana Dalla Vecchia Genvigir 08 September 2011 (has links)
A eficácia das estatinas em reduzir o risco de eventos coronarianos não é completamente explicada por seus efeitos em diminuir colesterol de lipoproteína de baixa densidade (LDL-C). Um dos seus efeitos adicionais pode ser decorrente da modificação na concentração de lipoproteína de alta densidade (HDL), reconhecida como ateroprotetora, principalmente por seu papel no transporte reverso do colesterol (TRC). Os transportadores de membrana do tipo ATP-binding cassette, ABCA1 e ABCG1, e o scavenger receptor BI (SRBI) são proteínas importantes envolvidas no TRC e seus genes são regulados por vários fatores de transcrição, entre eles os liver-x-receptors (LXRs). Com a finalidade de avaliarmos os efeitos dos hipolipemiantes sobre expressão dos transportadores ABC e do receptor SRBI, a expressão de RNAm do ABCA1, ABCG1, SCARB1, NR1H3 (LXR&#945;) e NR1H2 (LRX&#946;) foi avaliada por PCR em tempo real em células das linhagens HepG2 (origem hepática) e Caco-2 (origem intestinal) tratadas com atorvastatina ou sinvastatina (10 µM) e/ou ezetimiba (até 5 µM) por até 24 horas. Além disso, a expressão desses genes também foi avaliada em células mononucleares do sangue periférico (CMSP) de 50 pacientes normolipidêmicos (NL) e 71 hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4semanas, n=48) ou sinvastatina e/ou ezetimiba (10mg/dia/4 ou 8 semanas, n=23). A possível associação entre os polimorfismos ABCA1 C-14T e R219K e a expressão de RNAm em CMSP também foi avaliada por PCR-RFLP. O SCARB1 foi o gene mais expresso nas células HepG2 e Caco-2, seguido por NR1H2, NR1H3, ABCG1 e ABCA1 em HepG2 ou por ABCA1 e ABCG1 em Caco-2. O tratamento com estatinas (1 ou 10 µM) ou ezetimiba (5 µM), por 12 ou 24 horas, aumentou a expressão de RNAm do ABCG1, mas não de ABCA1 e SCARB1, em células HepG2. Ainda nesta linhagem, o aumento na transcrição dos genes NR1H2 e NR1H3 foi observado somente com a maior concentração de atorvastatina (10 µM) e, ao contrário, o tratamento com ezetimiba causou redução na transcrição de NR1H2, sem alteração de NR1H3. Em células Caco-2, o tratamento com atorvastatina ou sinvastatina por 12 ou 24 horas reduziu a quantidade do transcrito ABCA1 e não alterou a expressão do SCARB1 e do ABCG1, embora, para este último, tenha havido uma tendência à diminuição da expressão após tratamento com sinvastatina (p=0,07). Após tratamento com ezetimiba isolada (até 5 µM) nenhuma alteração de expressão de RNAm foi observada em células Caco-2; no entanto, após 24 horas de tratamento com sinvastatina e ezetimiba, foi reduzida a taxa de transcrição de ABCA1 e ABCG1, mas não de SCARB1. Ao contrário das linhagens celulares, em CMSP os genes NR1H2 e ABCG1 foram os mais expressos, seguidos pelos genes SCARB1 e ABCA1 e, finalmente, pelo NR1H3. Indivíduos HC tiveram maior expressão basal de NR1H2 e NR1H3, mas não de outros genes, quando comparados aos NL (p<0,05). Além disso, nos indivíduos HC, a expressão basal de ABCA1 foi maior em portadores do alelo -14T do polimorfismo ABCA1 -14C>T quando comparados aos portadores do genótipo -14CC (p=0,034). O tratamento com estatinas, com ezetimiba ou com a terapia combinada diminuiu a transcrição de ABCA1 e ABCG1. Para o SCARB1, NR1H2 e NR1H3, nenhuma alteração de expressão de RNAm em CMSP foi detectada após os tratamentos in vivo. Após todas as fases de tratamento, ABCA1 e ABCG1 e também NR1H2 e NR1H3 foram significativamente correlacionados entre si, mas nenhuma correlação com perfil lipídico sérico foi relevante. Coletivamente, esses resultados dão indícios de que os hipolipemiantes analisados (estatinas e ezetimiba) têm um importante papel na regulação da expressão de genes envolvidos no transporte reverso do colesterol e sugerem a existência de regulação tecido-específica para os dois transportadores ABC. Além disso, o efeito das estatinas ou da ezetimiba sobre a expressão do ABCA1, do ABCG1 ou do SCARB1 não sofreu influencia de alterações diretas da transcrição dos LXRs. / The efficacy of statins in reducing the risk of coronary events is not completely explained by their effects in decreasing cholesterol low-density lipoprotein (LDL-C). One of their additional effects may result from the change in concentration of high-density lipoprotein (HDL), recognized as atheroprotective, mainly for the role in reverse cholesterol transport (RCT). The membrane transporters, as ATP-binding cassette, ABCA1 and ABCG1, and scavenger receptor BI (SRBI) are important proteins involved in the RCT and their genes are regulated by various transcription factors, including the liver-X-receptors (LXRs) . In order to evaluate the effects of lipid lowering on expression of ABC transporters and SRBI receptor, the mRNA expression of ABCA1, ABCG1, SCARB1, NR1H3 (LXR&#945;) and NR1H2 (LRX&#946;) was assessed by real time PCR in HepG2 (hepatic origin) and Caco-2 (intestinal origin) cells treated with atorvastatin or simvastatin (10 µM) and/or ezetimibe (up to 5 µM) for 24 hours. Furthermore, the expression of these genes was evaluated in peripheral blood mononuclear cells (PBMC) of 50 normolipidemic (NL) and 71 hypercholesterolemic (HC) patients treated with atorvastatin (10mg/d/4 weeks, n = 48) or simvastatin and/or ezetimibe (10mg/d/4 or 8 weeks, n = 23). The possible association between ABCA1 C-14T and R219K polymorphisms and mRNA expression in PBMC was also evaluated by PCR-RFLP. SCARB1 was the most expressed in HepG2 and Caco-2 cells, followed by NR1H2, NR1H3, ABCG1 and ABCA1 in HepG2 or by ABCG1 and ABCA1 in Caco-2. The treatment with statins (1 or 10 µM) or ezetimibe (5 µM) for 12 or 24 hours, increased mRNA expression of ABCG1 but not ABCA1 and SCARB1 in HepG2 cells. Moreover, in HepG2 cells, atorvastatin also upregulated NR1H2 and NR1H3 only at 10.0 &#181;M, meanwhile ezetimibe downregulated NR1H2 but did not change NR1H3 expression. In Caco-2 cells, atorvastatin or simvastatin treatment for 12 or 24 hours reduced the amount of ABCA1 transcript and did not alter the ABCG1 and SCARB1 expressions, despite the tendency to decrease ABCG1 mRNA expression after simvastatin treatment (p = 0.07). After treatment with ezetimibe alone (up to 5 &#181;M) no change in mRNA expression was observed in Caco-2 cells; however, after 24 hours- simvastatin and ezetimibe treatments decreased the transcription of ABCA1 and ABCG1, but not of SCARB1. Unlike cell lines, in PBMC, NR1H2 and ABCG1 were the most expressed, followed by SCARB1 and ABCA1 and finally by the NR1H3. HC patients showed higher NR1H2 and NR1H3 basal expressions, but not of other genes, compared to NL (p <0.05). Moreover, in HC individuals, the ABCA1 basal expression was higher in individuals carrying -14T allele of -14C> T polymorphism when compared with -14CC carriers (p = 0.034). Treatment with statins, ezetimibe, or combined therapy downregulated ABCA1 and ABCG1 expression. For SCARB1, NR1H2 and NR1H3, no change in mRNA expression in PBMC was detected after treatments. After all phases of treatment, ABCA1 and ABCG1 as well as NR1H2 and NR1H3 were significantly correlated, but no correlation with serum lipid profile was relevant. Collectively, these results provide evidences that the lipid lowering (statins and ezetimibe) have an important role in mRNA expression regulation of genes involved in reverse cholesterol transport and suggest the existence of tissue-specific regulation for the ABC transporters. Furthermore, the effect of statins or ezetimibe on ABCA1, ABCG1 or SCARB1 expression was not directly influenced by changes of LXR transcription.
30

Impact d'une invalidation de LXRα sur la physiologie prostatique : un dialogue avec la signalisation androgénique

Viennois, Emilie 06 December 2011 (has links) (PDF)
L'hypertrophie bénigne de la prostate (HBP) est une pathologie qui affecte 50% des hommes dès l'âge de 60 ans et qui conduit à des troubles de la miction. L'HBP se caractérise par une hypertrophie exclusive ou composite de plusieurs compartiments tissulaires de la prostate que sont l'épithélium, le stroma et les fibres musculaires qui définissent respectivement les composantes glandulaire, fibreuse et musculaire de cette pathologie. Il a récemment été montré que les souris dépourvues en récepteurs nucléaires LXR (Liver‐X‐receptor) α (souris lxrα‐/‐) développent une hypertrophie de la prostate dont les signes histologiques évoquent une HBP de type fibreuse. Par ailleurs, un des traitements de l'HBP, vise à éteindre la signalisation androgénique en inhibant la conversion de la testostérone en son métabolite actif, la dihydrotestostérone (DHT). Le phénotype d'hypertrophie de la prostate pourrait donc également s'expliquer par une altération de la signalisation androgénique dans les souris lxrα‐/‐. Dans ce contexte, notre projet de recherche a été centré sur l'étude du rôle des LXR dans l'apparition de l'HBP dans sa composante glandulaire et l'analyse des relations moléculaires associant les signalisations dépendantes de LXRα et du récepteur des androgènes (AR) au sein de la prostate. Le phénotype d'HBP observé dans les souris lxrα‐/‐ résulte d'altérations importantes de l'homéostasie de l'épithélium qui miment la composante glandulaire : 1) une activité sécrétoire accrue ; 2) une altération des processus de sécrétion associée à une altération de l'expression des gènes codant des protéines du transport vésiculaire ; 3) une réponse altérée de certains gènes androgéno‐dépendants associée à une hypersensibilité aux androgènes ; 4) des modifications du réseau paracrine reliant le stroma et l'épithélium. Au final, ces travaux définissent LXRα comme un acteur clé de l'homéostasie prostatique et ouvrent des pistes intéressantes pour la compréhension de l'étiologie de l'HBP chez l'homme. Ces résultats montrent qu'il est possible de moduler la réponse androgénique de la prostate en ciblant LXRα. Ainsi, à plus long terme, l'activation pharmacologique de LXRα constitue une piste potentielle dans le traitement de l'HBP.

Page generated in 0.0579 seconds