• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 177
  • 102
  • 45
  • 27
  • 11
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 743
  • 208
  • 208
  • 204
  • 118
  • 115
  • 99
  • 97
  • 95
  • 94
  • 90
  • 89
  • 85
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Dynamical Properties of a Generalized Collision Rule for Multi-Particle Systems

Dinius, Joseph January 2014 (has links)
The theoretical basis for the Lyapunov exponents of continuous- and discrete-time dynamical systems is developed, with the inclusion of the statement and proof of the Multiplicative Ergodic Theorem of Oseledec. The numerical challenges and algorithms to approximate Lyapunov exponents and vectors are described, with multiple illustrative examples. A novel generalized impulsive collision rule is derived for particle systems interacting pairwise. This collision rule is constructed to address the question of whether or not the quantitative measures of chaos (e.g. Lyapunov exponents and Kolmogorov-Sinai entropy) can be reduced in these systems. Major results from previous studies of hard-disk systems, which interact via elastic collisions, are summarized and used as a framework for the study of the generalized collision rule. Numerical comparisons between the elastic and new generalized rules reveal many qualitatively different features between the two rules. Chaos reduction in the new rule through appropriate parameter choice is demonstrated, but not without affecting the structural properties of the Lyapunov spectra (e.g. symmetry and conjugate-pairing) and of the tangent space decomposition (e.g. hyperbolicity and domination of the Oseledec splitting). A novel measure of the degree of domination of the Oseledec splitting is developed for assessing the impact of fluctuations in the local Lyapunov exponents on the observation of coherent structures in perturbation vectors corresponding to slowly growing (or contracting) modes. The qualitatively different features observed between the dynamics of generalized and elastic collisions are discussed in the context of numerical simulations. Source code and complete descriptions for the simulation models used are provided.
122

Semidefinite Programming and Stability of Dynamical System

Stovall, Kazumi Niki 12 January 2006 (has links)
In the first part of the thesis we present several interior point algorithms for solving certain positive definite programming problems. One of the algorithms is adapted for finding out whether there exists or not a positive definite matrix which is a real linear combination of some given symmetric matrices A1,A2, . . . ,Am. In the second part of the thesis we discuss stability of nonlinear dynamical systems. We search using algorithms described in the first part, for Lyapunov functions of a few forms. A suitable Lyapunov function implies the existence of a hyperellipsoidal attraction region for the dynamical system, thus guaranteeing stability.
123

Assessing dynamic spinal stability using maximum finite-time Lyapunov exponents

Graham, Ryan B 09 August 2012 (has links)
The objective of this work was threefold: 1) to assess how local dynamic spinal stability is affected by various factors including: the personal lift-assist device (PLAD), different loads when lifting, and prolonged repetitive work; 2) to establish the between-day reproducibility of local dynamic stability and kinematic variability measures; and 3) to directly compare local dynamic spinal stability to quasi-static mechanical spinal stability. The first study was an investigation into the effects of the PLAD on local dynamic spinal stability during repetitive lifting. Short- (λmax-s) and long-term (λmax-l) maximum finite-time Lyapunov exponents were calculated from measured trunk kinematics to assess stability. PLAD use did not change λmax-s, but significantly reduced λmax-l; indicating increased local dynamic spinal stability when lifting with the device. The second study was a report on the effects of lifting two different loads (0% and 10% maximum back strength) on local dynamic spinal stability and kinematic variability, expressed as the mean standard deviation (MeanSD) across cycles. It was determined that increasing the load that was lifted significantly reduced λmax-s, but not λmax-l or MeanSD. Thus, as muscular and moment demands increased with load so did subjects’ spinal stability. The third study was designed to look at changes in local dynamic spinal stability and kinematic variability resulting from 1.5 hours of repetitive automotive manufacturing work, as well as the between-day reproducibility of the measures. Operators performed a repetitive dynamic trunk flexion task immediately pre- and post-shift, as well as at the same pre-shift time on the following day. Despite significant increases in back pain scores, operators were able to maintain their stability and variability post-shift. Moreover, λmax-s was the most reproducible measure. The final study was structured to directly compare lumbar spine rotational stiffness (quasi-static mechanical spinal stability), calculated with an EMG-driven biomechanical model, to local dynamic spine stability, during a series of dynamic lifting challenges. Results suggest that spine rotational stiffness and local dynamic stability are positively associated, as they provided similar information when lifting rate was controlled. However, both models provide unique information and future research is required to fully understand their relationship. In general, the results of these studies illustrate the potential for Lyapunov analyses of kinematic data to be used to assess local dynamic spinal stability in a variety of situations. / Thesis (Ph.D, Kinesiology & Health Studies) -- Queen's University, 2012-07-31 15:34:01.804
124

Globally stabilizing output feedback methods for nonlinear systems

Kvaternik, Karla Unknown Date
No description available.
125

Dynamical Adaptive Backstepping-Sliding Mode Control of Penumatic Actuator

He, Liang 23 September 2010 (has links)
This thesis documents the development of a novel nonlinear controller for servo pneumatic actuators that give good reference tracking at low speed motion, where friction has strong effect to the system behaviors. The design of the nonlinear controller presented in this thesis is based on the formalism of Lyapunov stability theory. The controller is constructed through a dynamical adaptive backstepping-sliding mode control algorithm. The conventional Lyapunov-based control algorithm is often limited by the order of the dynamical system; however, the backstepping design concept allows the control algorithm to be extended to higher order dynamical systems. In addition, the friction is estimated on-line via the Lyapunov-based adaptive laws embedded in the controller; meanwhile, the sliding mode control provides high robustness to the system parameter uncertainties. The simulation results clearly demonstrating the improved system performance (i.e., fast response and the reduced tracking error) are presented. Finally, the integration of the controller with a Lyapunov-based pressure observer reduces the state feedback of the servo pneumatic actuator model to only the piston displacement.
126

Sur la stabilité des systèmes à réinitialisation

Loquen, Thomas 07 May 2010 (has links) (PDF)
Les contrôleurs à réinitialisation sont une classe de systèmes hybrides dont la valeur de tout ou partie des états peut être instantannément modifiée sous certaines conditions algébriques. Cette interaction entre dynamique temps-continu et temps-discret de ces contrôleurs permet souvent de dépasser les limites des contrôleurs temps- continu. Dans cette thèse, nous proposons des conditions constructives (sous forme d'Inégalités Matricielles Linéaires) pour analyser la stabilité et les performances de boucle de commande incluant un contrôleur à réinitialisation. En particulier, nous prenons en compte la présence de saturation en amplitude des actionneurs du système. Ces non- linéarités sont souvent source d'une dégradation des performances voir d'instabilité. Les résultats proposés permettent d'estimer le domaine de stabilité et un niveau de performance pour ces systèmes, en s'appuyant sur des fonctions de Lyapunov quadratiques ou quadratiques par morceaux. Au delà de l'aspect analyse, nous exposons deux approches pour améliorer la région de stabilité (nouvelle loi de réinitialisation et stratégie "anti- windup").
127

Théorie de Lyapunov, commande robuste et optimisation

Arzelier, Denis 30 June 2004 (has links) (PDF)
Les récents développements en programmation semi-définie positive et en optimisation globale ont montré que les échanges entre les communautés de la théorie de la commande et de l'optimisation sont souvent à l'origine d'avancées significatives dans l'une ou l'autre des communautés. Originellement défini en théorie de la commande robuste, le formalisme lié aux inégalités matricielles linéaires a rapidement permis de développer le champ original de recherche en théorie de l'optimisation connu sous le terme de programmation semi-définie positive. En retour, les nombreux progrès théoriques (théorie de la dualité, méthodes de barrière...) et numériques (méthodes de points intérieurs, optimisation non différentiable...) ont fourni un support rigoureux à la majeure partie des développements algorithmiques produit en théorie de la commande robuste. Pour tous les formalismes actuellement utilisés en analyse et synthèse robustes allant de la théorie du mu (analyse et synthèse) au cadre de travail défini par les contraintes intégrales quadratiques, en passant par la théorie de la séparation des graphes, il est nécessaire de disposer d'une théorie de l'optimisation adéquate ainsi que des outils numériques efficaces associés. Au delà des liens habituels unissant les deux communautés, il nous a semblé qu'une relation plus subtile les liait. Outre le fait que les notions de performance et de robustesse conduisent naturellement à celle d'optimisation, les recherches entreprises et les résultats obtenus en théorie de la commande montrent souvent une parenté étroite avec le corpus issu de la théorie de l'optimisation. Une formalisation possible de ce lien organique entre les deux champs scientifiques est constituée par la théorie de Lyapunov. Nous nous attachons donc à illustrer les différents aspects que peut recouvrir la relation entre optimisation et théorie de la commande robuste. L'accent est particulièrement placé sur la théorie de Lyapunov, même si celle-ci n'en épuise pas t outes les facettes. Ainsi, après avoir présenté le contexte général de l'analyse et de la synthèse robustes et les problèmes d'optimisation particuliers qui leur sont liés, nous montrons comment de nombreux résultats obtenus dans le cadre de la théorie de Lyapunov peuvent être interprétés en terme de relaxations.
128

Energy efficient stability control of a biped based on the concept of Lyapunov exponents

Sun, Yuming 08 1900 (has links)
Balance control is important for biped standing. Due to the time-varying control bounds induced by the foot constraints, and the lack of tools for analyzing stability of highly nonlinear systems, it is extremely difficult to design balance control strategies for a standing biped with a rigorous stability analysis in spite of large efforts. In this thesis, three important issues are fully considered for a standing biped: maintaining the postural stability, minimizing the energy consumption and satisfying the constraints between the biped feet and the ground. Both the theoretical and the experimental studies on the constrained and energy-efficient control are carried out systematically using the genetic algorithm (GA). The stability for the proposed balancing system is thoroughly investigated using the concept of Lyapunov exponents. On the other hand, the controlled standing biped is characterized by high nonlinearity and great complexity. For systems with such features, in general the Lyapunov exponents are hard to be estimated using the model-based method. Meanwhile the biped is supposed to be stabilized at the upright posture, indicating that the system should possess negative Lyapunov exponents only. However the accuracy of negative exponents is usually poor if following the traditional time-series-based methods. As it is nontrivial to examine the system stability for bipedal robots, the numerical accuracy of the estimated Lyapunov exponents is extremely demanding. In this research, two novel approaches are proposed based upon system approximation using different types of Radial-Basis-Function (RBF) networks. Both the proposed methods can estimate the exponents reliably with straightforward algorithms, yet no mathematical model is required in any newly developed method. The efficacies of both methods are demonstrated through a linear quadratic regulator (LQR) balancing system for a standing biped, as well as several other dynamical systems. The thesis as a whole, has set up a framework for developing more sophisticated controllers in more complex movement for robot models with less conservative assumptions. The systematic stability analysis shown in this thesis has a great potential for many other engineering systems.
129

Dynamical Adaptive Backstepping-Sliding Mode Control of Penumatic Actuator

He, Liang 23 September 2010 (has links)
This thesis documents the development of a novel nonlinear controller for servo pneumatic actuators that give good reference tracking at low speed motion, where friction has strong effect to the system behaviors. The design of the nonlinear controller presented in this thesis is based on the formalism of Lyapunov stability theory. The controller is constructed through a dynamical adaptive backstepping-sliding mode control algorithm. The conventional Lyapunov-based control algorithm is often limited by the order of the dynamical system; however, the backstepping design concept allows the control algorithm to be extended to higher order dynamical systems. In addition, the friction is estimated on-line via the Lyapunov-based adaptive laws embedded in the controller; meanwhile, the sliding mode control provides high robustness to the system parameter uncertainties. The simulation results clearly demonstrating the improved system performance (i.e., fast response and the reduced tracking error) are presented. Finally, the integration of the controller with a Lyapunov-based pressure observer reduces the state feedback of the servo pneumatic actuator model to only the piston displacement.
130

Globally stabilizing output feedback methods for nonlinear systems

Kvaternik, Karla 11 1900 (has links)
The non-local stabilization of nonlinear systems by output feedback is a challenging problem that remains the subject of continuing investigation in control theory. In this thesis we develop two globally asymptotically stabilizing output feedback algorithms for multivariable nonlinear systems. Our first result is an extension a well-known output feedback method to a class of nonlinear systems whose dynamics can be written as a collection of subsystems that are dynamically coupled through output-dependent nonlinear terms. We show that this method must be modified to accommodate the dynamic coupling by introducing additional nonlinear damping terms into each control input. Our second contribution involves the application of observer backstepping to systems in a restricted block-triangular observer form. In this form, the nonlinearities entering each subsystem are allowed to depend on the output associated with the subsystem, and all upper subsystem states, including unmeasured ones. The proposed algorithm is demonstrated on a magnetically levitated ball. / Controls

Page generated in 0.0342 seconds