Spelling suggestions: "subject:"lyapunov exponential.""
31 |
Thermodynamic formalism, statistical properties and multifractal analysis of non-uniformly hyperbolic systemsWang, Tianyu 20 October 2021 (has links)
No description available.
|
32 |
Quantum Dynamics Using Lie Algebras, with Explorations in the Chaotic Behavior of OscillatorsSayer, Ryan Thomas 06 August 2012 (has links) (PDF)
We study the time evolution of driven quantum systems using analytic, algebraic, and numerical methods. First, we obtain analytic solutions for driven free and oscillator systems by shifting the coordinate and phase of the undriven wave function. We also factorize the quantum evolution operator using the generators of the Lie algebra comprising the Hamiltonian. We obtain coupled ODE's for the time evolution of the Lie algebra parameters. These parameters allow us to find physical properties of oscillator dynamics. In particular we find phase-space trajectories and transition probabilities. We then search for chaotic behavior in the Lie algebra parameters as a signature for dynamical chaos in the quantum system. We plot the trajectories, transition probabilities, and Lyapunov exponents for a wide range of the following physical parameters: strength and duration of the driving force, frequency difference, and anharmonicity of the oscillator. We identify conditions for the appearance of chaos in the system.
|
33 |
Chaos in Pulsed Laminar FlowKumar, Pankaj 01 September 2010 (has links)
Fluid mixing is a challenging problem in laminar flow systems. Chaotic advection can play an important role in enhancing mixing in such flow. In this thesis, different approaches are used to enhance fluid mixing in two laminar flow systems.
In the first system, chaos is generated in a flow between two closely spaced parallel circular plates by pulsed operation of fluid extraction and reinjection through singularities in the domain. A singularity through which fluid is injected (or extracted) is called a source (or a sink). In a bounded domain, one source and one sink with equal strength operate together as a source-sink pair to conserve the fluid volume. Fluid flow between two closely spaced parallel plates is modeled as Hele-Shaw flow with the depth averaged velocity proportional to the gradient of the pressure. So, with the depth-averaged velocity, the flow between the parallel plates can effectively be modeled as two-dimensional potential flow. This thesis discusses pulsed source-sink systems with two source-sink pairs operating alternately to generate zig-zag trajectories of fluid particles in the domain. For reinjection purpose, fluid extracted through a sink-type singularity can either be relocated to a source-type one, or the same sink-type singularity can be activated as a source to reinject it without relocation. Relocation of fluid can be accomplished using either "first out first in" or "last out first in" scheme. Both relocation methods add delay to the pulse time of the system. This thesis analyzes mixing in pulsed source-sink systems both with and without fluid relocation. It is shown that a pulsed source-sink system with "first out first in" scheme generates comparatively complex fluid flow than pulsed source-sink systems with "last out first in" scheme. It is also shown that a pulsed source-sink system without fluid relocation can generate complex fluid flow.
In the second system, mixing and transport is analyzed in a two-dimensional Stokes flow system. Appropriate periodic motions of three rods or periodic points in a two-dimensional flow are determined using the Thurston-Nielsen Classification Theorem (TNCT), which also predicts a lower bound on the complexity generated in the fluid flow. This thesis extends the TNCT -based framework by demonstrating that, in a perturbed system with no lower order fixed points, almost invariant sets are natural objects on which to apply the TNCT. In addition, a method is presented to compute line stretching by tracking appropriate motion of finite size rods. This method accounts for the effect of the rod size in computing the complexity generated in the fluid flow. The last section verifies the existence of almost invariant sets in a two-dimensional flow at finite Reynolds number. The almost invariant set structures move with appropriate periodic motion validating the application of the TNCT to predict a lower bound on the complexity generated in the fluid flow. / Ph. D.
|
34 |
Computational Intelligence and Complexity Measures for Chaotic Information ProcessingArasteh, Davoud 16 May 2008 (has links)
This dissertation investigates the application of computational intelligence methods in the analysis of nonlinear chaotic systems in the framework of many known and newly designed complex systems. Parallel comparisons are made between these methods. This provides insight into the difficult challenges facing nonlinear systems characterization and aids in developing a generalized algorithm in computing algorithmic complexity measures, Lyapunov exponents, information dimension and topological entropy. These metrics are implemented to characterize the dynamic patterns of discrete and continuous systems. These metrics make it possible to distinguish order from disorder in these systems. Steps required for computing Lyapunov exponents with a reorthonormalization method and a group theory approach are formalized. Procedures for implementing computational algorithms are designed and numerical results for each system are presented. The advance-time sampling technique is designed to overcome the scarcity of phase space samples and the buffer overflow problem in algorithmic complexity measure estimation in slow dynamics feedback-controlled systems. It is proved analytically and tested numerically that for a quasiperiodic system like a Fibonacci map, complexity grows logarithmically with the evolutionary length of the data block. It is concluded that a normalized algorithmic complexity measure can be used as a system classifier. This quantity turns out to be one for random sequences and a non-zero value less than one for chaotic sequences. For periodic and quasi-periodic responses, as data strings grow their normalized complexity approaches zero, while a faster deceasing rate is observed for periodic responses. Algorithmic complexity analysis is performed on a class of certain rate convolutional encoders. The degree of diffusion in random-like patterns is measured. Simulation evidence indicates that algorithmic complexity associated with a particular class of 1/n-rate code increases with the increase of the encoder constraint length. This occurs in parallel with the increase of error correcting capacity of the decoder. Comparing groups of rate-1/n convolutional encoders, it is observed that as the encoder rate decreases from 1/2 to 1/7, the encoded data sequence manifests smaller algorithmic complexity with a larger free distance value.
|
35 |
Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções / Advances in partially hyperbolic dynamics and entropy for iterated function systemsMicena, Fernando Pereira 15 February 2011 (has links)
Neste trabalho estudamos relações entre expoente de Lyapunov e continuidade absoluta da folheação central para difeomorfismos parcialmente hiperbólicos conservativos de \'T POT. 3\'. Sobre tal tema, provamos que tipicamente (\'C POT. 1\' aberto e \'C POT. 2\' denso) os difeomorfismos parcialmente hiperbólicos, conservativos de classe \'C POT. 2\' , do toro \'T POT. 3\', apresentam folheação central não absolutamente contínua. Desta maneira, respondemos positivamente uma pergunta proposta em [20]. Também neste trabalho, estudamos entropia topológica para Sistema Iterado de Funções. Neste contexto, damos uma nova demonstração para uma conjectura proposta em [14] e provada primeiramente em [15]. Apresentamos um método geométrico que nos permite calcular entropia para transformações de \'S POT. 1\', como em [15]. Além de disso o método apresentado se verifica para casos mais gerais, como por exemplo: transformações não comutativas / In this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of \'T POT. 3\'. About this theme, (on a \'C POT. 1\' open and \'C POT. 2\'dense set) of conservative partially hyperbolic \'C POT. 2\' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of \'S POT. 1\', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
|
36 |
ANÁLISE DE ESTRUTURAS PERIÓDICAS E EROSÃO NO ESPAÇO DE PARÂMETROS DE SISTEMAS NÃO-LINEARESSantos, Vagner dos 26 March 2015 (has links)
Made available in DSpace on 2017-07-21T19:25:45Z (GMT). No. of bitstreams: 1
VagnerI.pdf: 11138375 bytes, checksum: d9bd7c0fe3aba2949fbf229e29e527e4 (MD5)
Previous issue date: 2015-03-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we investigated the parameter space of a system consisting of two oscillators coupled in a master-slave configuration. In order to do so we employed Lyapunov exponent's diagrams in the parameter space, the distribution of the finite-time Lyapunov exponents and its positive fraction. We were able to show that, when the slave system is coupled to the master, the shrimp-shaped periodic structures that previously existed begins to be eroded from the outside, and that the erosion progresses with the increase in the intensity of the coupling. We also showed that in the region where the erosion takes place the second Lyapunov exponent exhibits a bimodal distribution with a maximum close to zero and the other close to 0:1. By plotting the points in the phase space that belong to each maximum we were able to identify two kinds of attractors, a limit cicle and a chaotic attractor, in which the slave system intermittently moves. / Neste trabalho foi investigado o espaço de parâmetros de um sistema formado por dois osciladores acoplados em uma configuração mestre-escravo. Como ferramenta de análise utilizamos diagramas de expoente de Lyapunov no espaço de parâmetros, a distribuição a tempo finito do expoente de Lyapunov e sua fração positiva. Mostramos que quando o sistema escravo é acoplado ao mestre as estruturas periódicas em formato de camarão existentes anteriormente começam a ser erodidas de fora para dentro, e que essa erosão aumenta com o aumento da intensidade do acoplamento. Mostramos também que na região em que ocorre a erosão o segundo expoente de Lyapunov apresenta uma distribuição bimodal com um máximo próximo a zero e outro próximo a 0; 1. Plotando os pontos no espaço de fase pertencentes a cada um dos máximos encontramos dois tipos de atratores, um ciclo limite e um atrator caótico, nos quais o sistema escravo transita de forma intermitente.
|
37 |
Estruturas de bifurcação em sistemas dinâmicos quadridimensionais / Bifurcation structures in four-dimensional dynamical systemsHoff, Anderson 25 February 2014 (has links)
Made available in DSpace on 2016-12-12T20:15:51Z (GMT). No. of bitstreams: 1
Anderson Hoff.pdf: 11193047 bytes, checksum: f07cba24b1a4da1b53270bac747a0252 (MD5)
Previous issue date: 2014-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estruturas de bifurcação delimitam regiões periódicas imersas em áreas de caos em planos de parâmetros de sistemas dinâmicos. Neste trabalho são estudadas as estruturas de bifurcação de sistemas dinâmicos contínuos quadridimensionais, um circuito de Chua e um acoplamento de dois osciladores de FitzHugh-Nagumo. Os resultados numéricos foram obtidos através do cálculo dos expoentes de Lyapunov, através de integração numérica dos sistemas, e das curvas de bifurcação, por continuação numérica através do MatCont. Investigou-se as bifurcações que formam o endoesqueleto de camarões em planos de parâmetros no circuito de Chua, além de estruturas espirais, caos transiente e bacias de atração caóticas e periódicas. Análise semelhante foi realizada no acoplamento de dois osciladores de FitzHugh-Nagumo, identificando estruturas periódicas imersas em regiões caóticas, estruturas de línguas de Arnold imersas em regiões de comportamento quase-periódico, com períodos organizados e conectadas com regiões periódicas, e a sensibilidade do sistema às condições iniciais.
|
38 |
Formalismo termodinâmico do conjunto irregular para médias de Birkhoff e expoentes de Lyapunov / Thermodynamic formalism of the irregular set averages of Birkhoff and Lyapunov exponentsSilva, Giovane Ferreira 22 March 2011 (has links)
In this work, we study the set X ̇(φ,f) of points such that the Birkhoff averages do not exist. Following Thompson, our main result here is to show that the topological pressure of X ̇(φ,f) is total. As corollary, we get the some result for the Oseledets Irregular set for Lyapunov exponent in one dimension. For higher dimensions, this question is still open. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, estudamos o conjunto X ̇(φ,f) de pontos tal que as médias de Birkhoff não existe. Seguindo Thompson, nosso resultado principal aqui é mostrar que a pressão topológica de X ̇(φ,f) é total. Como corolário, damos o mesmo resultado para o conjunto Irregular de Oseledets para os expoentes de Lyapunov em dimensão um. Para dimensões maiores, esta questão está em aberto.
|
39 |
The Impact of Coordination Quality on Coordination Dynamics and Team Performance: When Humans Team with AutonomyJanuary 2017 (has links)
abstract: This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions. / Dissertation/Thesis / Doctoral Dissertation Engineering 2017
|
40 |
Dinâmica do mapa logístico via supertracks / Dynamic of logistic map via supertrackFidélis, Antônio João 08 March 2013 (has links)
Made available in DSpace on 2016-12-12T20:15:50Z (GMT). No. of bitstreams: 1
Antonio J Fidelis.pdf: 14922669 bytes, checksum: 6b0a7e53941481a93d4afce451520db9 (MD5)
Previous issue date: 2013-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present a study of the logistic map xn+1 = rxn(1 xn) based on the supertracks, a set of continuous functions of the fixed parameter r recursively generated from the map s critical point Xmax = 1/2. This functions determine some iriternal and externa! boundaries of the orbit diagram of the map and provide information about the dynamics of the orbits. The iritersections of these functions can be periodic points or Misiurewicz points. We analyze the dynamics of the orbit in a particular Misiurewicz point, originated from the first coilision between the unstable fixed point and the chaotic attractor. As inedited results, we present algebraically the Lyapunov exponent and the invariant measure for this fixed parameter s value r. Algebraical orbits from the birth and the death of the famous period 3 window are presented as inedited result too. / Neste trabalho apresentamos um estudo do mapa logístico xn + 1 = rxn(1 xn) através do formalismo de supertracks, um conjunto de funções contínuas do parâmetro fixo r geradas recursivamente a partir do ponto crítico do mapa Xmax = 1/2. Essas funções determinam algumas fronteiras internas e externas no diagrama de bifurcação do mapa e fornecem informações sobre a dinâmica das órbitas. As interseções dessas funções podem ser pontos periódicos ou pontos de Misiurewicz. Analisamos a dinâmica da órbita num ponto de Misiurewicz em particular, originado da primeira colisão do ponto fixo instável com o atrator caótico. Como resultados inéditos, apresentamos de forma algébrica o expoente de Lyapunov e a medida invariante para este valor do parâmetro r. As órhitas algébricas do nascimento e da morte da famosa janela de período 3 são também ineditamente apresentados.
|
Page generated in 0.0813 seconds