• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 257
  • 226
  • 76
  • 37
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • Tagged with
  • 1076
  • 248
  • 173
  • 167
  • 149
  • 130
  • 128
  • 108
  • 107
  • 104
  • 98
  • 86
  • 85
  • 82
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Novel Cutting-Edge In-situ Deposition of Soft Metallic Solid Lubricant Coatings for Efficient Machining of High-Strength alloys

Mofidi, Asadollah January 2024 (has links)
Inconel 718 has widespread use in critical industries like aerospace, marine, and power generation. However, its challenging machinability, characterized by tool chipping/failure, and poor surface quality, remains a significant concern. Despite numerous efforts to enhance tool performance in machining hard-to-machine materials, the issue of sudden tool failure and chipping persists. This study presents an innovative in-situ tool treatment method, complemented by an optimized recoating strategy, aimed at tackling these challenges. The approach involves the application of a lubricating soft metallic Al-Si alloy coating to the tool’s faces, which can be recoated when needed. During subsequent Inconel machining, the Al-Si layer deposited on the tool melts due to high temperatures. The molten material fills microcracks on the tool surface, preventing their propagation. Moreover, the tool can slide on the beneficial tribo-films Al-Si layer which reduces friction, sticking, seizure, and built-up edge formation, resulting in decreased tool wear and chipping. The newly developed pre-machined recoating method has yielded promising outcomes, reducing cutting force and significantly improving tool lifespan compared to the PVD benchmark and uncoated tools. Additionally, this novel method enhances surface quality and minimizes undesirable microstructural alterations induced by machining. / Thesis / Master of Applied Science (MASc) / Chipping and excessive tool wear pose significant challenges in machining high-strength alloys like Inconel 718, limiting their applicability across various industries. According to research, conventional strategies used to deal with the machining challenges posed by Inconel 718 have not produced the best results. The goal of this research is to overcome the machining issues associated with such a difficult-to-cut material innovatively by depositing soft metallic coatings as a solid lubricant to enhance the machining performance. In this study, a cost-effective novel in-situ deposition technique with recoating capability as an alternative to conventional coatings is presented to achieve this goal. This innovative approach aims to improve tool performance during Inconel 718 machining significantly. This study also provides a thorough insight into the application of solid lubricants in machining, discussing their mechanisms, effectiveness, constraints, and potential to boost productivity and environmental sustainability. Furthermore, comprehensive investigations have been conducted to gain deeper insights into the prevalent wear mechanisms and surface treatments that can lead to improved machining performance for Inconel 718.
172

Technologie výroby součásti / Technology of production part

Straka, Jiří January 2012 (has links)
This diploma thesis is developed within my Master’s degree studies, branch mechanical engineering (M21 K), and specialization in M STM. The aim of this thesis is to solve the technology of mechanical production (machining, tooling) for the machine component called ‚shape lid‘. I execute the analysis of this technology from the perspective of the conventional machining process, and alternatively, some of the non conventional machining process, too. Conventional machining process is so far used for manufacturing of this sort of machine’s element. It‘s implying laborious work difficulties, even it’s economically disadvantageous. I suggest a new technology of manufacturing. At first, a semi-finished component could be sized by conventional machining process, and then it could be finished by the CNC (computer numerical control) milling machine. By the non-conventional machining process assume the usage of an electro-erosive machining, plasma machining, or water jet machining.Conventional technology suppose the usage of CNC milling machines. Thereinafter, feasibility aspects of this brand new technology are considered in technical and economical perspective.
173

Microcapteurs de hautes fréquences pour des mesures en aéroacoustique / High Frequency MEMS Sensor for Aeroacoustic Measurements

Zhou, Zhijian 21 January 2013 (has links)
L’aéroacoustique est une filière de l'acoustique qui étudie la génération de bruit par un mouvement fluidique turbulent ou par les forces aérodynamiques qui interagissent avec les surfaces. Ce secteur en pleine croissance a attiré des intérêts récents en raison de l’évolution de la transportation aérienne, terrestre et spatiale. Les microphones avec une bande passante de plusieurs centaines de kHz et une plage dynamique couvrant de 40Pa à 4 kPa sont nécessaires pour les mesures aéroacoustiques. Dans cette thèse, deux microphones MEMS de type piézorésistif à base de silicium polycristallin (poly-Si) latéralement cristallisé par l’induction métallique (MILC) sont conçus et fabriqués en utilisant respectivement les techniques de microfabrication de surface et de volume. Ces microphones sont calibrés à l'aide d'une source d’onde de choc (N-wave) générée par une étincelle électrique. Pour l'échantillon fabriqué par le micro-usinage de surface, la sensibilité statique mesurée est 0.4μV/V/Pa, la sensibilité dynamique est 0.033μV/V/Pa et la plage fréquentielle couvre à partir de 100 kHz avec une fréquence du premier mode de résonance à 400kHz. Pour l'échantillon fabriqué par le micro-usinage de volume, la sensibilité statique mesurée est 0.28μV/V/Pa, la sensibilité dynamique est 0.33μV/V/Pa et la plage fréquentielle couvre à partir de 6 kHz avec une fréquence du premier mode de résonance à 715kHz. / Aero-acoustics, a branch of acoustics which studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces, is a growing area and has received fresh emphasis due to advances in air, ground and space transportation. Microphones with a bandwidth of several hundreds of kHz and a dynamic range covering 40Pa to 4kPa are needed for aero-acoustic measurements. In this thesis, two metal-induced-lateral-crystallized (MILC) polycrystalline silicon (poly-Si) based piezoresistive type MEMS microphones are designed and fabricated using surface micromachining and bulk micromachining techniques, respectively. These microphones are calibrated using an electrical spark generated shockwave (N-wave) source. For the surface micromachined sample, the measured static sensitivity is 0.4μV/V/Pa, dynamic sensitivity is 0.033μV/V/Pa and the frequency range starts from 100kHz with a first mode resonant frequency of 400kHz. For the bulk micromachined sample, the measured static sensitivity is 0.28μV/V/Pa, dynamic sensitivity is 0.33μV/V/Pa and the frequency range starts from 6kHz with a first mode resonant frequency of 715kHz.
174

Interactive Virtual Machining : A Voxel Based Approach

Mahesh, N 12 1900 (has links) (PDF)
No description available.
175

Racionalizace obrábění skříní převodovek / The racionalization of machining of gearboxes

Sádlo, Dominik January 2020 (has links)
Content of the thesis is the proposal of new technology using machining centres, including five controlled axis. Benefit of implementation the new nechnology is investigated at machining example, which is the gear housing of a single stage gearbox, manufactured in the company. In the first part of the thesis, the general properties of gearboxes and their housings are analyzed, as well as the procedure of the current proces of the machining representative. In practical part of the thesis is proposed necessary tool equipment and jig equipment, needed for machining of the part. After that are analyzed and filled in time studies, provided by manufacturers of machining centres. On the bases of these studies, were calculated operating times and operating costs per one piece of the housing. In the part of technical and economical evaluation is calculated the return of initial investment, including costs for byuing new machining cente and cutting tools equipment. Finaly are evaluated the overal benefits of the new technology, given the needs of the company.
176

Návrh technologie výroby tvarového víka / Design of production technology of shaped cover

Doležal, Václav January 2013 (has links)
This thesis presents a design technology of forming a shaped lid focused on cutting, bending, drawing, as well as trimming and making the required holes. There is described several basic variants of sheet metal forming based on the literature. Production of holes of specified cover, for an annual production of 100 pieces of shaped lid, is solved by unconventional technologies. From subsequent economic evaluation of selected technologies is chosen an appropriate technology to minimize production costs.
177

Combining additive fabrication and conventional machining technologies to develop a hybrid tooling approach

Booysen, G., Truscott, M., Mosimanyane, D., De Beer, D. January 2009 (has links)
Published Article / South Africa is constantly loosing contracts for the manufacturing of innovative projects to the East, due to its non-competitive mould-making industry. The paper will report on progress made in a specific focus area in mould-making, namely Hybrid Moulds for injection moulding. Hybrid Moulds refers to a hybrid between Additive Fabrication and conventional methods through the use of amongst others, Direct Metal Laser Sintering techniques, combined with conventional CNC machining (High Speed) techniques. Although the emphasis is on an economically viable process for limited production runs, once the moulds have been developed, it normally is pushed to its limits to realize production quantities. One of the competitive edges is the cutting of lead-times, which obviously impacts on production costs. Another aspect is the ability to manufacture short runs of injection moulded parts in the required engineering material Realising that Laser Sintering of metals is an expensive manufacturing process, a concurrent manufacturing process was developed. Intricate mould details, which normally are time-consuming to manufacture through EDM processes, were grown as inserts, while the less-complex parts of the mould is machined in Aluminium through 3 and 5 Axis High Speed CNC Machining. Using a 3-axis CNC wire cutter, pockets will be created where the more complex Laser Sintered Metal inserts will be fitted. One of the competitive edges is the cutting of lead-times, which obviously impacts on production costs. Another aspect is the ability to manufacture short runs of injection moulded parts in the required engineering material.
178

A Study on the Sustainable Machining of Titanium Alloy

Dawood, Abdulhameed Alaa 01 April 2016 (has links)
Titanium and its alloy (Ti-6Al-4V) are widely used in aerospace industries because of their light weight, high specific strength, and corrosion resistance. This study conducted a comparative experimental analysis of the machinability of Ti-6Al-4V for conventional flood coolant machining and sustainable dry machining. The effect of cutting speed, feed rate, and depth of cut on machining performance has been evaluated for both conditions. The machining time and surface roughness were found to be lower in dry machining compared to flood coolant machining. The tool wear was found to be unpredictable, and no significant difference was observed for dry and coolant machining. In a comparison of all the parameters, sustainable dry machining was found to provide better performance in machining Ti-6Al-4V. This study also investigated the machinability of Ti-6Al-4V using coated and uncoated tungsten carbide tools under dry conditions. Tool wear is a serious problem in the machining of titanium alloys in dry conditions. Heat dissipation from the toolworkpiece interface a difficult challenge in dry machining, resulting in the alloying of the workpiece to the tool surface. Dry machining with the coated tool was comparatively faster, and resulted in less tool wear than uncoated tools. Using the Titanium aluminum nitride TiAlN coated carbide tool during dry machining provided a smoother surface finish with lower average surface roughness. The conclusion, therefore, is that the tool coating was found to be effective for the dry machining of titanium alloys.
179

Design and analysis of the internally cooled smart cutting tools with the applications to adaptive machining

Bin Che Ghani, Saiful Anwar January 2013 (has links)
Adaptive machining with internally cooled smart cutting tools is a smart solution for industrial applications, which have stringent manufacturing requirements such as contamination free machining (CFM), high material removal rate, low tool wear and better surface integrity. The absence of cutting fluid in CFM causes the cutting tool and the workpiece subject to great thermal loads owing to higher friction and adhesion, and as a result may increase the levels of tool wear drastically. The increase in cutting temperature may influence the chip morphology which in return producing metal chips in unfavourable ribbon or snarl forms. CFM is difficult to be realized as contaminants can be in various forms in the machining operation and to avoid them totally requires a very tight controlled condition. However, the ecological, economical and technological demands compel the manufacturing practitioners to implement environmentally clean machining process (ECMP). Machining with innovative cooling techniques such as heat pipe, single-phase microduct, cryogenic or minimum quantity lubrication (MQL) has been intensely researched in recent years in order to reduce the cutting temperature in ECMP, thus enabling the part quality, the tool life and the material removal rate achieved in ECMP at least equate or surpass those obtained in conventional machining. On the other hand, the reduction of cutting temperature by using these techniques is often superfluous and is adverse to the produced surface roughness as the work material tends to inherent brittle and hard property at low temperature. Open cooling system means the machining requires a constant cooling supply and it does not provide a solution for process condition feedback as well.This Ph.D. project aims to investigate the design and analysis of internally cooled cutting tools and their implementation and application perspectives for smart adaptive machining in particular. Circulating the water based cooling fluid in a closed loop circuit contributes to sustainable manufacturing. The advantage of reducing cutting temperature from localized heat at the tool tip of an internally cooled cutting tool is enhanced with the smart features of the tool, which is trained by real experimental data, to cognitively vary the coolant flow rate, cutting feed rate or/and cutting speed to control the critical machining temperature as well as optimum machining conditions. Environmental friendly internal micro-cooling can avoid contamination of generated swarf which can also reduce the cutting temperature and thus reduce tool wear, increase machining accuracy and optimize machining economics. Design of the smart cutting tool with internal micro-cooling not only takes into account of the environmental aspects but also justifies with its ability to reduce the machining cost. Reduction of production cost can be achieved with the lower consumption of cooling fluid and improved machining resources/ energy efficiency. The models of structural, heat transfer, computational fluid dynamics (CFD) and tool life provide useful insight of the performance of the internally cooled smart cutting tool. Experimental validation using the smart cutting tool to machine titanium, steel and aluminium, indicates that the application of internally cooled smart cutting tools in adaptive machining can improve machining performance such as cutting temperature, cutting forces and surface quality generated. The useful tool life span is also extended significantly with internally cooled smart cutting tools in comparison to the tool life in conventional machining. The internally cooled smart cutting tool has important implications in the application to ECMP particularly by overcoming the stigma of high uncontrollable cutting temperature with the absence of cooling fluid.
180

Evolving design and control strategies for production systems

Ardon-Finch, Jason January 2000 (has links)
No description available.

Page generated in 0.0641 seconds