• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 257
  • 226
  • 76
  • 37
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • Tagged with
  • 1075
  • 248
  • 173
  • 167
  • 149
  • 129
  • 128
  • 108
  • 107
  • 103
  • 98
  • 86
  • 85
  • 82
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Estratégia de usinagem em verde dirigida ao projeto de peças cerâmicas / Green machining directed to the project of ceramic parts

Bukvic, Gill 16 October 2015 (has links)
Este trabalho trata da usinagem em verde aplicada ao projeto de corpos cerâmicos, quanto a sua morfologia e propriedades requeridas e inclui estratégia de usinagem para seleção do processo, parâmetros de corte e ferramentas. A usinagem em verde é uma técnica estruturada na filosofia do near-net-shape e vem sendo amplamente aplicada na fabricação de peças cerâmicas de formatos variados e complexos, a exemplo de implantes ósseos. Por ser aplicada em compactos de baixa resistência mecânica exige precauções e controle sobre as forças aplicadas na usinagem. O trabalho objetiva a elaboração de uma matriz de decisão para estratégia de usinagem em verde para a seleção e tomada de decisões, que baseada em um produto, possa direcionar aspectos relativos à formulação de ligantes cerâmicos, tratamentos pós-conformação, ferramentas, equipamentos e parâmetros de usinagem. Foram preparados grânulos de aluminas, baseados em ligantes PVAl, PVB e acrílicos B-1022 e B-1007, compactados na forma de cilindros, blocos e de cones. Na usinagem foram empregadas ferramentas com abrasivos de diamante, CBN e alumina eletrofundida com ligante metálico, resinoide e vitrificado. Operações representativas da usinagem foram selecionadas e aplicadas na geração de cilindros, barras e furos. Seletivamente foram realizadas medidas de torque de usinagem e forças tangenciais desenvolvidas durante o corte em verde. A resistência mecânica à flexão foi medida em verde e após sinterização, enquanto a rugosidade foi medida após a sinterização. Os resultados mostram uma forte correlação entre resistência em verde dos compactados brutos e esforços de corte e foram observadas particularidades para cada ligante cerâmico aplicado e para cada tipo de abrasivo e ligante utilizado nas ferramentas. Como melhores resultados, de peças usinadas com rebolo de alumina eletrofundida, foram encontradas resistência mecânica em verde de 7,8 MPa em peças com ligante acrílico B-1022, resistência mecânica após sinterização de 342,6 MPa em peças com ligante de PVB, potência consumida de 192,2 W em peças com ligante PVAl, rugosidade de 0,761 μm em peças com o ligante acrílico B-1007, e com ferramenta de diamante uma força de corte de 0,222 N foi obtida em peças com ligante PVAl. É concluído que há um forte compromisso entre todas as variáveis estudadas e que o formato e dimensão do produto, bem como seu acabamento e propriedades requeridas, podem ser fortemente influenciadas pelas condições do compactado e da usinagem empregada. Como solução mais notável, se tem o uso do ligante acrílico B-1007 prensado a 200 MPa, ferramenta com abrasivo de diamante de granulometria #80 mesh com ligante metálico, onde foi observado o compromisso de alta resistência em verde (para suportar os esforços), baixo empastamento de rebolo, baixa força de corte, baixa potência consumida, acabamento superficial e integridade das bordas. A matriz de decisão para estratégia de usinagem em verde desenvolvida foi aplicada na fabricação de um implante dentário conceitual free-form e foi validada pelo sucesso da obtenção desta peça. / This paper deals with the green machining applied to the project of ceramic parts, specifically with its morphology and required properties and includes machining strategy to the selection of the process, cutting parameters and tools. Green machining is a structured near-net-shape technique philosophy and has widely been applied in the ceramic parts manufacturing with varied and complex shapes such as bone implants. For being applied in low mechanical strength compacts parts it requires precautions and control over the forces used during the machining process. This work aims the development of a decision matrix for a machining green strategy to provide a selection and a decision-making that, based on a product, will direct aspects relating to the ceramic binders formulation, post-forming treatments, tools, required equipment and machining parameters. Alumina granules were prepared based on binders such as PVAl, PVB, acrylics B-1022 and B-1007, compacted in the form of cylinders, blocks and cones. In the machining itself it was applied tools with diamond, CBN and eletrofused alumina abrasives with metal, resinoid and vitrified binders. Representing machining operations were selected and applied in order to form cylinders, bars and holes. Were made selectively measures of machining torque and tangential forces, developed during the green cutting. The flexural mechanical strength was measured in green and after sintering while the surface roughness was measured after the sintering. The results demonstrate a strong correlation between only the green strength of the rough compacted parts and the cutting forces and it was observed the particularities of each ceramic binder applied and each kind of the abrasive and binder used in the tools. As best results, machining using eletrofused alumina grinding wheel obtained green strength up to 7.8 MPa in parts with B-1022 acrylic binder, mechanical strength after sintering up to 342.6 MPa in parts with PVB binder, power consumption up to 192.2 W in parts with PVAl binder, surface roughness up to 0.761 μm in parts with B-1007 acrylic binder and with diamond tool a cutting force up to 0,222 N was obtained in parts with PVAl binder. As a conclusion, it can be said that there is a strong commitment between all the studied variables and the format and size of the product, as well as its finishing and required properties can be strongly influenced by the conditions of the compacted parts and the machining used. The most remarkable solution, has been the use of B-1007 acrylic binder compacted at 200 MPa, diamond abrasive tool with grain size of #80 mesh with metal binder, where was observed a high green strength commitment (to withstand the stresses), low grinding wheel clogging, low cutting force, low power consumption, surface finishing and edges integrity. The developed decision matrix for the strategy of a green machining was applied for a free-form conceptual dental implant manufacturing and has been validated by the obtainment of this part with success.
152

PROCESS-INDUCED SURFACE INTEGRITY IN MACHINING OF NITI SHAPE MEMORY ALLOYS

Kaynak, Yusuf 01 January 2013 (has links)
NiTi alloys have been the focus of Shape Memory Alloys (SMA) research and applications due their excellent ductility and shape memory properties, and these alloys have been extensively used in automotive, aerospace, and in biomedical applications. The effects of machining on the surface integrity and the corresponding material and mechanical properties of alloys can be best studied by utilizing NiTi alloys as workpiece material since their physical and mechanical properties are highly microstructure dependent. However, due to very poor machining performance of NiTi shape memory alloys, no comprehensive or systematic investigation on this topic has been conducted by researchers as yet. The current study makes a substantial and unique contribution to this area by making the first and significant contribution to studies on machining performance of NiTi shape memory alloys, and by achieving improved surface integrity and machining performance using cryogenic applications, which give significant reductions of tool-wear, cutting forces, and surface roughness. The influence of machining process conditions, including dry, MQL, preheated, cryogenic machining, and the effects of prefroze cryo machining on surface integrity characteristics such as microhardness, phase transformation, phase transformation temperature, depth of plastically deformed layer have been examined extensively, and unique findings have been obtained. The effects of machining process conditions, in particular preheated and cryogenic machining conditions, on thermo-mechanical and shape memory characteristics were identified through thermal cycling and stress-strain tests. For the first time, orthogonal cutting of NiTi shape memory alloys has been carried out in this study to investigate surface integrity comprehensively. Surface integrity and machining performance are compared for dry and prefroze cryogenic cooling conditions under a wide range of cutting speeds. Stress-induced martensitic phase transformation and deformation twinning were found in prefroze cryogenic and dry cutting conditions respectively. The existing microstructure-based constitutive models were used and modified to predict machining-induced phase transformation and resulting volume fraction. The modified model was implemented in commercial FEM software (DEFORM-2D) as a customized user subroutine. The obtained results from simulation and orthogonal cutting tests were compared considering martensitic volume fraction during cutting with various cutting speeds. The model captured the experimental trend of volume fraction induced by various cutting speeds and process variables. Overall, FEM simulation of cutting process of NiTi was successfully presented.
153

Tool Life and Flank Wear Modeling of Physical Vapour Deposited TiAlN/TiN Multilayer Coated Carbide End Mill Inserts when Machining 4340 Steel Under Dry and Semi-Dry Cutting Conditions

Chakraborty, Pinaki 03 January 2008 (has links)
This study investigates the tool wear of advanced PVD TiALN/TiN multilayer coated end mill inserts when dry and semi-dry machining 4340 low alloy medium carbon steel. A factorial design of experiment setup consisting of two levels of speed, three levels of feed, two levels of depth of cut, and two levels of cutting conditions (semi-dry and dry) was used for the study. The combination of cutting conditions that gave the best response for different components of cutting force, cutting power, surface roughness and tool life were determined using MANOVA & ANOVA analysis and Tukey comparison of means test using MINITAB statistical software package. From a study of the Energy Dispersive X ray (EDX) analysis and primary back scatter images obtained from the worn out crater surface of the insert, it was observed that diffusion wear prevailed under both dry and semi-dry machining conditions. A tool life model was developed using multiple regression analysis within the range of cutting conditions selected. A model for flank wear progression was also developed using mixed effects modeling technique using S Plus statistical software package. This technique takes into account between and within work piece variations during end milling and produces a very accurate model for tool wear progression. This is the first time application of the mixed effects modeling technique in metal cutting literature.
154

Machining Chatter in Flank Milling and Investigation of Process Damping in Surface Generation

Ahmadi, Keivan January 2011 (has links)
Although a considerable amount of research exists on geometrical aspects of 5-axis flank milling, the dynamics of this efficient milling operation have not yet been given proper attention. In particular, investigating machining chatter in 5-axis flank milling remains as an open problem in the literature. The axial depth of cut in this operation is typically quite large, which makes it prone to machining chatter. In this thesis, chatter in 5-axis flank milling is studied by developing analytical methods of examining vibration stability, generating numerical simulations of the process, and conducting experimental investigations. The typical application of 5-axis milling includes the machining of thermal resistant steel alloys at low cutting speeds, where the process damping dominates the machining vibration. The results of experimental study in this thesis showed that the effect of process damping is even stronger in flank milling due to the long axial engagement. Accordingly, the first part of the thesis is devoted to studying process damping, and in the second part, the modeling of chatter in flank milling is presented. Linear and nonlinear models have been reported in the literature that account for process damping. Although linear models are easier to implement in predicting stability limits, they could lead to misinterpretation of the actual status of the cut. On the other hand, nonlinear damping models are difficult to implement for stability estimation analytically, yet they allow the prediction of “finite amplitude stability” from time domain simulations. This phenomenon of “finite amplitude stability” has been demonstrated in the literature using numerical simulations. In this thesis, that phenomenon is investigated experimentally. The experimental work focuses on uninterrupted cutting, in particular plunge turning, to avoid unduly complications associated with transient vibration. The experiments confirm that, because of the nonlinearity of the process damping, the transition from fully stable to fully unstable cutting occurs gradually over a range of width of cut. The experimental investigation is followed by developing a new formulation for process damping based on the indentation force model. Then, the presented formulation is used to compute the stability lobes in plunge turning, taking into account the effect of nonlinear process damping. The developed lobes could be established for different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes represent a single boundary between fully stable and fully unstable cutting conditions. Moreover, the process damping model is integrated into the Multi-Frequency Solution and the Semi Discretization Method to establish the stability lobes in milling. The basic formulations are presented along with comparisons between the two approaches, using examples from the literature. A non-shallow cut is employed in the comparisons. Assessing the performance of the two methods is conducted using time domain simulations. It is shown that the Semi Discretization Method provides accurate results over the whole tested range of cutting speed, whereas higher harmonics are required to achieve the same accuracy when applying the Multi Frequency Solution at low speeds. Semi Discretization method is modified further to calculate the stability lobes in flank milling with tools with helical teeth. In addition to the tool helix angle and long axial immersion, the effect of instantaneous chip thickness on the cutting force coefficients is considered in the modified formulation of Semi Discretization as well. Considering the effect of chip thickness variation on the cutting force coefficients is even more important in the modeling of 5-axis flank milling, where the feedrate, and consequently the chip thickness, varies at each cutter location. It also varies along the tool axis due to the additional rotary and tilt axis. In addition to the feedrate, the tool and workpiece engagement geometry varies at each cutter location as well. The actual feedrate at each cutter location is calculated by the dynamic processing of the toolpath. The tool and workpiece engagement geometry is calculated analytically using the parametric formulation of grazing surface at the previous and current passes. After calculating the instantaneous chip thickness and tool/workpiece engagement geometry, they are integrated into the Semi Discretization Method in 5-axis flank milling to examine the stability of vibration at each cutter location. While the presented chatter analysis results in establishing stability lobes in 3-axis flank milling, it results in developing a novel approach in presenting the stability of the cut in 5-axis flank milling. The new approach, namely “stability maps”, determines the unstable cutter locations of the toolpath at each spindle speed. The accuracy of established 3-axis flank milling stability lobes and 5-axis stability maps is verified by conducting a set of cutting experiments and numerical simulations.
155

Development of a Small Envelope Precision Milling Machine.

Kirk, Dean Frederick January 2006 (has links)
The credit card industry is huge with over two and a half billion cards shipped annually. A local card manufacturer, with a production volume in excess of forty million cards annually, approached the University of Canterbury to design and develop advanced card manufacturing technology. The motivation behind this development was the desire of the sponsoring company to keep abreast of new technologies and to have the ability to manufacture and supply cards with this new and emerging technology into a highly competitive world market. This thesis reports the research surrounding the development of a dedicated new machine tool explicitly designed to implement the emerging technologies found in the international credit card industry. The machine tool, a dedicated milling machine, was not developed in its entirety within these pages; however, three major constituents of the machine were researched and developed to a point where they could be implemented or become the subject of further research. The three areas of interest were; • A machine table system that avoided the increased zonal wear to which linear bearings are subject, typically due to short high frequency traversals, and also the high friction and mass generally found in dovetail slides. • Design requirements demanded the use of a single commercially available carbide cutter to produce 1500 components per hour. Therefore, a purpose built high (revs per minute) rpm spindle and drive system specifically for use with polymeric materials, (R-PVC in particular) was deemed necessary. • Tracking the cutter depth in relation to an RFID aerial track embedded within the credit card core. The aerial tracking was to be dynamic and occur during the machining process with the machine “remembering” the depth of cut at contact with the aerial. Each of the three areas was researched via an in-depth literature review to determine what and if any material had been published in these fields. For the development of the machine table a novel flexure hinge idea was considered. Considerable material was discovered about flexures, but very little was found to be relevant to the application of high displacement metal flexures necessary to meet the required levels of table movement. In effect the proposed machine table system and research in this field would be novel. The high performance spindle investigation became directed into a much narrower focus as it progressed; that of determining the power consumption required to machine the integrated circuit pockets in an R-PVC work piece. This was due to the lack of information pertaining to the physical properties of polymeric materials, in particular the specific cutting pressure. The depth following sensor array was configured using capacitance detection methods to determine the distance between the cutter?s end and the aerial tracks. Capacitance sensing methods, whilst not new, were developed into a novel arrangement to meet the specific cutter tracking requirements of the proposed new machine tool. Each of the respective development areas had concept designs completed and were prototyped before being tested to determine the effectiveness of the respective designs. The outcomes from the testing are reported herein, and show each constituent part to be basically feasible, in the application. The results were sufficient to indicate that each development showed distinct potential but further development and integration into the machine tool should ensue.
156

Machining Chatter in Flank Milling and Investigation of Process Damping in Surface Generation

Ahmadi, Keivan January 2011 (has links)
Although a considerable amount of research exists on geometrical aspects of 5-axis flank milling, the dynamics of this efficient milling operation have not yet been given proper attention. In particular, investigating machining chatter in 5-axis flank milling remains as an open problem in the literature. The axial depth of cut in this operation is typically quite large, which makes it prone to machining chatter. In this thesis, chatter in 5-axis flank milling is studied by developing analytical methods of examining vibration stability, generating numerical simulations of the process, and conducting experimental investigations. The typical application of 5-axis milling includes the machining of thermal resistant steel alloys at low cutting speeds, where the process damping dominates the machining vibration. The results of experimental study in this thesis showed that the effect of process damping is even stronger in flank milling due to the long axial engagement. Accordingly, the first part of the thesis is devoted to studying process damping, and in the second part, the modeling of chatter in flank milling is presented. Linear and nonlinear models have been reported in the literature that account for process damping. Although linear models are easier to implement in predicting stability limits, they could lead to misinterpretation of the actual status of the cut. On the other hand, nonlinear damping models are difficult to implement for stability estimation analytically, yet they allow the prediction of “finite amplitude stability” from time domain simulations. This phenomenon of “finite amplitude stability” has been demonstrated in the literature using numerical simulations. In this thesis, that phenomenon is investigated experimentally. The experimental work focuses on uninterrupted cutting, in particular plunge turning, to avoid unduly complications associated with transient vibration. The experiments confirm that, because of the nonlinearity of the process damping, the transition from fully stable to fully unstable cutting occurs gradually over a range of width of cut. The experimental investigation is followed by developing a new formulation for process damping based on the indentation force model. Then, the presented formulation is used to compute the stability lobes in plunge turning, taking into account the effect of nonlinear process damping. The developed lobes could be established for different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes represent a single boundary between fully stable and fully unstable cutting conditions. Moreover, the process damping model is integrated into the Multi-Frequency Solution and the Semi Discretization Method to establish the stability lobes in milling. The basic formulations are presented along with comparisons between the two approaches, using examples from the literature. A non-shallow cut is employed in the comparisons. Assessing the performance of the two methods is conducted using time domain simulations. It is shown that the Semi Discretization Method provides accurate results over the whole tested range of cutting speed, whereas higher harmonics are required to achieve the same accuracy when applying the Multi Frequency Solution at low speeds. Semi Discretization method is modified further to calculate the stability lobes in flank milling with tools with helical teeth. In addition to the tool helix angle and long axial immersion, the effect of instantaneous chip thickness on the cutting force coefficients is considered in the modified formulation of Semi Discretization as well. Considering the effect of chip thickness variation on the cutting force coefficients is even more important in the modeling of 5-axis flank milling, where the feedrate, and consequently the chip thickness, varies at each cutter location. It also varies along the tool axis due to the additional rotary and tilt axis. In addition to the feedrate, the tool and workpiece engagement geometry varies at each cutter location as well. The actual feedrate at each cutter location is calculated by the dynamic processing of the toolpath. The tool and workpiece engagement geometry is calculated analytically using the parametric formulation of grazing surface at the previous and current passes. After calculating the instantaneous chip thickness and tool/workpiece engagement geometry, they are integrated into the Semi Discretization Method in 5-axis flank milling to examine the stability of vibration at each cutter location. While the presented chatter analysis results in establishing stability lobes in 3-axis flank milling, it results in developing a novel approach in presenting the stability of the cut in 5-axis flank milling. The new approach, namely “stability maps”, determines the unstable cutter locations of the toolpath at each spindle speed. The accuracy of established 3-axis flank milling stability lobes and 5-axis stability maps is verified by conducting a set of cutting experiments and numerical simulations.
157

Otimização do processo de usinagem de titânio com laser pulsado de neodímio

ALMEIDA, IVAN A. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:36Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:47Z (GMT). No. of bitstreams: 0 / Um requisito do processo de manufatura é a necessidade de se obter peças processadas, caracterizadas pela boa qualidade de acabamento superficial, baixa rugosidade e a conservação de suas propriedades metalúrgicas. Essas condições motivaram o desenvolvimento deste estudo, no qual selecionou-se o processamento de materiais a laser para o corte do titânio, unindo uma tecnologia a um metal de recente aplicação. Além disso, a versatilidade e as vantagens, como também a tendência global do setor industrial, tornaram-se fatores preponderantes na utilização do laser como ferramenta de usinagem. Neste presente trabalho foram investigados os efeitos da usinagem por laser pulsado de Nd:YAG sobre a qualidade, como também a formação de fases na superfície de corte e analisados pela aplicação do planejamento experimental. Para isso, chapas de titânio comercialmente puro (grau 2) e da liga Ti-6Al-4V (grau 5), com espessuras de 0,5 e 1,0 milímetros, foram empregadas na realização dos ensaios sob ação do laser. As amostras obtidas foram analisadas por microscopia ótica (MO), microscopia eletrônica por varredura (MEV), ensaios de microdureza e inspeção superficial da rugosidade. Capturaram-se digitalmente as imagens do material ressolidificado, aderido na superfície de corte para determinação da formação de rebarbas. Com base nestes dados construíram-se arranjos fatoriais, por meio da metodologia de planejamento experimental (DOE), a fim de avaliar o grau de influência dos parâmetros e suas possíveis interações e assim averiguar sua significância estatística. Verificou-se um endurecimento superficial na região do corte a laser com nitrogênio, em virtude da formação de nitretos (TiN) sob uma fina camada da zona de ressolidificação. Apesar da complexidade das interações entre os diversos parâmetros envolvidos no processamento a laser, os resultados corroboram que a otimização do processo de corte a laser do titânio pode ser factível. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
158

Uma contribuição ao estudo do torneamento interno em aços endurecidos / A contribution to the study of the internal turning of hardened steels

Suyama, Daniel Iwao, 1984- 25 August 2018 (has links)
Orientador: Anselmo Eduardo Diniz / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-25T12:18:47Z (GMT). No. of bitstreams: 1 Suyama_DanielIwao_D.pdf: 19824608 bytes, checksum: 42328aa3d238d31db30a82c3afb12889 (MD5) Previous issue date: 2014 / Resumo: A usinagem de materiais endurecidos, com dureza acima de 45 HRC, surge como alternativa à retificação na década de 70, com a disponibilidade comercial de ferramentas de Nitreto Cúbico de Boro (cBN). Porém, a baixa tenacidade deste tipo de ferramenta a torna muito sensível a avarias causadas por vibrações, que são críticas nas operações as quais a peça ou a ferramenta são suscetíveis a grandes deflexões. Este trabalho busca contribuir com o estudo de vibrações no torneamento interno de furos do aço AISI 4340 endurecido, em condições de acabamento. Foram testadas diferentes condições de usinagem, diferentes suportes (aço, metal duro e equipada com amortecedor de partículas) e foram avaliados o acabamento, os sinais de aceleração (vibração) da ferramenta e o desgaste dos insertos de cBN. Os resultados obtidos mostram que as vibrações podem assumir papel secundário no acabamento superficial, que a usinagem com ferramentas de geometria definida pode substituir a retificação em alguns casos e que a utilização de amortecedores passivos pode ser uma solução simples para a usinagem de furos mais longos / Abstract: The machining of hardened materials with hardness over 45 HRC, emerges as an alternative to grinding in the 70s, with the commercial availability of Cubic Boron Nitride (cBN) tools. However, the low toughness of this type of tool makes it very sensitive to damage caused by vibrations, which are critical in the operations which the part or tool are susceptible to large deflections. This work aims to contribute to the study of vibrations in internal turning of holes in hardened AISI 4340 steel in finishing conditions. Different machining conditions and different tool holders (steel, carbide and equipped with particle damper) were tested. The surface finish, the acceleration (vibration) signals and tool wear of cBN inserts were evaluated. The results show that the vibration can take a secondary role in the surface finish, the machining with defined geometry tools can replace grinding in some cases, and the use of passive dampers can be a simple solution for machining longer holes / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
159

Usinage à sec ou MQL : quantification et prise en compte des dilatations thermiques durant le process / Dry or MQL machining : quantification and consideration of thermal distortions along the process

Boyer, Henri-francois 12 June 2013 (has links)
L'industrie automobile cherche à réduire son utilisation des liquides de coupe en usinage pour des raisons économiques, environnementales et sanitaires. Les fabricants développent ainsi la démarche Minimum Quantity Lubrication qui vise à réduire au strict minimum l'utilisation des liquides de coupes en usinage. En l'absence de liquide de coupe, la stabilisation thermique de la pièce n'est plus assurée et des échauffements locaux apparaissent. Ces échauffements créent des déformations qui doivent être quantifiés et pris en compte afin d'assurer la conformité de la géométrie produite.Une démarche de modélisation de l'échauffement d'une pièce pendant l'usinage est présentée. Le modèle obtenu permet à la fois de quantifier la quantité de chaleur introduit dans la pièce pour des usinages simples et de simuler les déformations d'une pièce complexe lors de l'enchainement d'opération d'usinage. Cette quantification repose sur une méthode inverse. Elle est appliquée à des opérations de fraisage, perçage et taraudage d'un alliage d'aluminium AS9U3. Dans un second temps, une étude de l'influence de l'ordonnancement des opérations d'usinage d'un carter de boite de vitesses automobile sur la qualité de la géométrie produite est conduite. Cette étude illustre l'intérêt du modèle de simulation et des outils développés pendant la thèse. Enfin, les enjeux économiques et environnementaux de la technologie MQL seront abordés. / The application of MQL or dry machining in mass production becomes more and more accepted. Dry (MQL) machining is a very efficient solution to reduce the usage of cutting fluids and represents an effective measure for an environmental friendly production. However, these techniques do not benefit any more from the stabilization in temperature obtained with cutting fluids. More important and more heterogeneous increases of the temperature are observed. This leads to distortions of the work piece during machining which are necessary to be taken into account to maintain the geometrical quality of the manufactured surfaces.A model of the warm-up of a part during machining is presented. The obtained model allows to quantify heat introduced into the work piece for simple operations and to feign the distortions of a complex part when operations are enchained. This quantification is based on an inverse method. It is applied for reaming, drilling and tapping process for an aluminum alloy AS9U3. Secondly, a study about influence of operations organization is done. We use the model to quantify distortions an aluminum clutch case along machining. This study illustrates interest of the model and of tools developed during the PhD. In a last part, economic and environmental stakes of the MQL approach are discussed.
160

Analýza defektů měděné slitiny po elektroerozivním drátovém řezání / Analysis of defects of copper alloy after wire electrical discharge machining

Vontor, Jakub January 2020 (has links)
Electrical discharge wire machining, which represents non-conventional machining technology is up on very high technological level. However, due to this type of machining many of defects are set on the material and the quality of machined surface is changed according to set parameters of machine. Complex study was created with the aim of optimization these parameters according to final quality of surface and right wire speed. This study include experiment with 33 samples, every of these samples was machined with different parameters, results of these machining were analyzed.

Page generated in 0.115 seconds