1 |
Formation of hard magnetic L1 0 -FePt/FePd monolayers from elemental multilayersGoo, Nam Hoon, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
|
2 |
Herstellung und Charakterisierung kontinuierlicher FePt-L10-Schichten auf MgO-SubstratenSellge, Gabriel 21 January 2019 (has links)
Die vorliegende Arbeit beschäftigt sich mit kontinuierlichen FePt-L10-Dünnschichten. Der Fokus liegt dabei auf den strukturellen Eigenschaften der FePt-Legierung in der chemisch geordneten L10-Phase und deren Auswirkungen auf magnetische Eigenschaften des Systems. Die Quantifizierung der chemischen Ordnung erfolgte durch Röntgenbeugung (XRD). Die magnetische Hysterese wurde durch SQUID-VSM untersucht. Die Analyse der Oberflächentopografie erfolgte mit der Rasterkraftmikroskopie (AFM).
Es konnte gezeigt werden, dass die Herstellung von L10-geordneten und gleichzeitig kontinuierlichen FePt-Schichten mittels Magnetronsputterdeposition bei hohen Temperaturen von 500°C bis 600°C möglich ist. Weiterhin wurde die Abhängigkeit der senkrechten magnetokristallinen Anisotropie von der chemischen Ordnung untersucht. Es konnte eine Anisotropieenergiedichte von 27 Merg/ccm erreicht werden.:1 Einleitung
2 Theorie
2.1 Magnetische Materialien
2.1.1 Grundlagen
2.1.2 Magnetische Hysterese
2.1.3 Magnetische Anisotropie
2.2 FePt-Legierungen
2.2.1 Strukturelle Eigenschaften und chemische Ordnung
2.2.2 Magnetische Eigenschaften
3 Experimentelle Methoden
3.1 Magnetronsputterdeposition
3.2 Röntgenbeugung und Röntgenreflektometrie
3.2.1 Röntgenbeugung
3.2.2 Röntgenreflektometrie
3.3 Rasterkraftmikroskopie
3.4 Magnetometrie
3.5 Transmissionselektronenmikroskopie
3.6 Rutherfordrückstreuspektrometrie
3.7 Röntgenphotoelektronenspektroskopie
4 Qualität der MgO-Substrate
5 Hergestellte FePt-Schichten
6 Ergebnisse
6.1 Chemische Ordnung von FePt
6.2 Kontinuität von dünnen FePt-Schichten
6.2.1 Oberflächenanalyse mit Rasterkraftmikroskopie
6.2.2 Hinweise auf kontinuierliche Schichten
6.2.3 Verunreinigungen der Probenoberfläche
6.3 Magnetische Eigenschaften von FePt
7 Zusammenfassung
8 Ausblick
Literatur
|
3 |
Rapid thermal annealing of FePt and FePt/Cu thin filmsBrombacher, Christoph 14 February 2011 (has links) (PDF)
Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets.
In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO2 particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L10 phase.
The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L10 order, rapid thermal annealing can lead to the formation of chemically ordered FePt fifilms with (001) texture on amorphous SiO2/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneuosly to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 °C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO2 particle templates with periods down to 50 nm.
The addition of Cu improves the (001) texture formation and chemcial ordering for annealing temperatures T < 600 °C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated using e-beam and nanoimprint lithography have been investigated.
|
4 |
Rapid thermal annealing of FePt and FePt/Cu thin filmsBrombacher, Christoph 10 January 2011 (has links)
Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets.
In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO2 particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L10 phase.
The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L10 order, rapid thermal annealing can lead to the formation of chemically ordered FePt fifilms with (001) texture on amorphous SiO2/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneuosly to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 °C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO2 particle templates with periods down to 50 nm.
The addition of Cu improves the (001) texture formation and chemcial ordering for annealing temperatures T < 600 °C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated using e-beam and nanoimprint lithography have been investigated.
|
Page generated in 0.1285 seconds