• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 55
  • 22
  • Tagged with
  • 137
  • 124
  • 103
  • 100
  • 100
  • 93
  • 54
  • 52
  • 52
  • 32
  • 29
  • 29
  • 28
  • 25
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Atrio-ventrikuläre Mechanik und Herzinsuffizienz in der Ebstein'schen Anomalie- eine Studie mittels kardiovaskulärer Magnetresonanztomographie / Atrio-Ventricular Mechanics And Heart Failure In Ebstein’s Anomaly – A Cardiovascular Magnetic Resonance Study

Broder, Marike Elisabeth 14 November 2017 (has links)
No description available.
62

Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing

Mainka, Alexander, Poznyakovskiy, Anton, Platzek, Ivan, Fleischer, Mario, Sundberg, Johan, Mürbe, Dirk 08 June 2016 (has links)
The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21.9%) and volume (+ 16.8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer‘s formant cluster.
63

Brauchen wir gadoliniumhaltiges Kontrastmittel in der Hirn-MRT-Diagnostik bei Kindern?

Bühning (geb.: Dünger), Dennis 15 February 2021 (has links)
Hintergrund und Ziele: Gadolinium (Gd) wird seit 1988 als Kontrastmittel (KM) für Hirn-Magnetresonanztomographie (MRT)-Untersuchungen verwendet und gilt auch heute noch in vielen Kliniken zum Standard einer „lege artis“ durchgeführten pädiatrischen Hirnuntersuchung. Es galt lange Zeit als sehr nebenwirkungsarm, doch in den letzten Jahren wurden vermehrt Studien veröffentlicht, die von zum Teil schweren Folgen aufgrund der Gd-Applikation berichteten (Nephrotic systemic fibrosis, Gadolinium deposition disease). Ziel dieser Studie war es, den diagnostischen Zugewinn durch die generelle Gabe von Gd bei Kindern zu beurteilen, wenn initial im nativen Hirn-MRT kein pathologischer Befund zu finden war. Methodik: Für diese retrospektive Studie wurden 6.683 kraniale KM-MRT-Untersuchungen von Kindern im Alter von 0 bis 16 Jahren nochmals ausgewertet und daraufhin untersucht, ob die KM-Gabe zusätzliche relevante Informationen liefern konnte. Ergebnisse: In 8 von 3.003 (0,03 %) nativ unauffälligen Untersuchungen konnte durch KM-Gabe ein relevanter Zusatzbefund ermittelt werden. In allen 8 Fällen handelte es sich dabei um ein meningeales Enhancement. Dies entspricht einem negativen prädiktiven Wert (NPV) von 0,97. Von diesen relevanten Zusatzbefunden war das Enhancement nur bei einem Kind (0,03 %) richtungsweisend für die Diagnostik. Bei den nativ auffälligen Untersuchungen konnte in 297 von 3.680 (8,1 %) MRT´s ein relevanter Zusatzbefund gefunden werden. Schlussfolgerungen: Unsere Studie zeigte, dass eine KM-Gabe bei nativ unauffälligem Befund nur in einem Fall (0,03 %) eine richtungsweisende Diagnose mit Änderung der therapeutischen Strategie brachte. Stellt man diesem Ergebnis die Nachteile einer routinemäßigen Gd-Applikation gegenüber, ergibt sich eine zahlenmäßig begründete Evidenz, zukünftig routinemäßig auf die KM-Gabe bei nativ unauffälligen Befunden zu verzichten. In Einzelfällen kann von dieser Empfehlung abgewichen werden, wenn klinisch der Verdacht auf eine ZNS-Infektion besteht, oder wenn bei unklarer Symptomatik ein spreitender meningealer Tumor mit KM-Gabe ausgeschlossen werden soll. Bei pädiatrischen MRT-Untersuchungen des Gehirns, die schon vor KM-Gabe Auffälligkeiten zeigen, besteht weiterhin eine klare Indikation für die KM-Applikation. / Abstract Background: Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. Objective: To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. Materials and methods: We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. Results: In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Conclusion: Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.
64

Towards Individualized Transcranial Electric Stimulation Therapy through Computer Simulation

Kalloch, Benjamin 29 November 2021 (has links)
Transkranielle Elektrostimulation (tES) beschreibt eine Gruppe von Hirnstimulationstechniken, die einen schwachen elektrischen Strom über zwei nicht-invasiv am Kopf angebrachten Elektroden applizieren. Handelt es sich dabei um einen Gleichstrom, spricht man von transkranieller Gleichstromstimulation, auch tDCS abgekürzt. Die allgemeine Zielstellung aller Hirnstimulationstechniken ist Hirnfunktion durch ein Verstärken oder Dämpfen von Hirnaktivität zu beeinflussen. Unter den Stimulationstechniken wird die transkranielle Gleichstromstimulation als ein adjuvantes Werkzeug zur Unterstützung der mikroskopischen Reorganisation des Gehirnes in Folge von Lernprozessen und besonders der Rehabilitationstherapie nach einem Schlaganfall untersucht. Aktuelle Herausforderungen dieser Forschung sind eine hohe Variabilität im erreichten Stimulationseffekt zwischen den Probanden sowie ein unvollständiges Verständnis des Zusammenspiels der der Stimulation zugrundeliegenden Mechanismen. Als Schlüsselkomponente für das Verständnis der Stimulationsmechanismen wird das zwischen den Elektroden im Kopf des Probanden aufgebaute elektrische Feld erachtet. Einem grundlegenden Konzept folgend wird angenommen, dass Hirnareale, die einer größeren elektrischen Feldstärke ausgesetzt sind, ebenso einen höheren Stimulationseffekt erfahren. Damit kommt der Positionierung der Elektroden eine entscheidende Rolle für die Stimulation zu. Allerdings verteilt sich das elektrische Feld wegen des heterogenen elektrischen Leitfähigkeitsprofil des menschlichen Kopfes nicht uniform im Gehirn der Probanden. Außerdem ist das Verteilungsmuster auf Grund anatomischer Unterschiede zwischen den Probanden verschieden. Die triviale Abschätzung der Ausbreitung des elektrischen Feldes anhand der bloßen Position der Stimulationselektroden ist daher nicht ausreichend genau für eine zielgerichtete Stimulation. Computerbasierte, biophysikalische Simulationen der transkraniellen Elektrostimulation ermöglichen die individuelle Approximation des Verteilungsmusters des elektrischen Feldes in Probanden basierend auf deren medizinischen Bildgebungsdaten. Sie werden daher zunehmend verwendet, um tDCS-Anwendungen zu planen und verifizieren, und stellen ein wesentliches Hilfswerkzeug auf dem Weg zu individualisierter Schlaganfall-Rehabilitationstherapie dar. Softwaresysteme, die den dahinterstehenden individualisierten Verarbeitungsprozess erleichtern und für ein breites Feld an Forschern zugänglich machen, wurden in den vergangenen Jahren für den Anwendungsfall in gesunden Erwachsenen entwickelt. Jedoch bleibt die Simulation von Patienten mit krankhaftem Hirngewebe und strukturzerstörenden Läsionen eine nicht-triviale Aufgabe. Daher befasst sich das hier vorgestellte Projekt mit dem Aufbau und der praktischen Anwendung eines Arbeitsablaufes zur Simulation transkranieller Elektrostimulation. Dabei stand die Anforderung im Vordergrund medizinische Bildgebungsdaten insbesondere neurologischer Patienten mit krankhaft verändertem Hirngewebe verarbeiten zu können. Der grundlegende Arbeitsablauf zur Simulation wurde zunächst für gesunde Erwachsene entworfen und validiert. Dies umfasste die Zusammenstellung medizinischer Bildverarbeitungsalgorithmen zu einer umfangreichen Verarbeitungskette, um elektrisch relevante Strukturen in den Magnetresonanztomographiebildern des Kopfes und des Oberkörpers der Probanden zu identifizieren und zu extrahieren. Die identifizierten Strukturen mussten in Computermodelle überführt werden und das zugrundeliegende, physikalische Problem der elektrischen Volumenleitung in biologischen Geweben mit Hilfe numerischer Simulation gelöst werden. Im Verlauf des normalen Alterns ist das Gehirn strukturellen Veränderungen unterworfen, unter denen ein Verlust des Hirnvolumens sowie die Ausbildung mikroskopischer Veränderungen seiner Nervenfaserstruktur die Bedeutendsten sind. In einem zweiten Schritt wurde der Arbeitsablauf daher erweitert, um diese Phänomene des normalen Alterns zu berücksichtigen. Die vordergründige Herausforderung in diesem Teilprojekt war die biophysikalische Modellierung der veränderten Hirnmikrostruktur, da die resultierenden Veränderungen im Leitfähigkeitsprofil des Gehirns bisher noch nicht in der Literatur quantifiziert wurden. Die Erweiterung des Simulationsablauf zeichnete sich vorrangig dadurch aus, dass mit unsicheren elektrischen Leitfähigkeitswerten gearbeitet werden konnte. Damit war es möglich den Einfluss der ungenau bestimmbaren elektrischen Leitfähigkeit der verschiedenen biologischen Strukturen des menschlichen Kopfes auf das elektrische Feld zu ermitteln. In einer Simulationsstudie, in der Bilddaten von 88 Probanden einflossen, wurde die Auswirkung der veränderten Hirnfaserstruktur auf das elektrische Feld dann systematisch untersucht. Es wurde festgestellt, dass sich diese Gewebsveränderungen hochgradig lokal und im Allgemeinen gering auswirken. Schließlich wurden in einem dritten Schritt Simulationen für Schlaganfallpatienten durchgeführt. Ihre großen, strukturzerstörenden Läsionen wurden dabei mit einem höheren Detailgrad als in bisherigen Arbeiten modelliert und physikalisch abermals mit unsicheren Leitfähigkeiten gearbeitet, was zu unsicheren elektrischen Feldabschätzungen führte. Es wurden individuell berechnete elektrische Felddaten mit der Hirnaktivierung von 18 Patienten in Verbindung gesetzt, unter Berücksichtigung der inhärenten Unsicherheit in der Bestimmung der elektrischen Felder. Das Ziel war zu ergründen, ob die Hirnstimulation einen positiven Einfluss auf die Hirnaktivität der Patienten im Kontext von Rehabilitationstherapie ausüben und so die Neuorganisierung des Gehirns nach einem Schlaganfall unterstützen kann. Während ein schwacher Zusammenhang hergestellt werden konnte, sind weitere Untersuchungen nötig, um diese Frage abschließend zu klären.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms Bibliography / Transcranial electric current stimulation (tES) denotes a group of brain stimulation techniques that apply a weak electric current over two or more non-invasively, head-mounted electrodes. When employing a direct-current, this method is denoted transcranial direct current stimulation (tDCS). The general aim of all tES techniques is the modulation of brain function by an up- or downregulation of brain activity. Among these, transcranial direct current stimulation is investigated as an adjuvant tool to promote processes of the microscopic reorganization of the brain as a consequence of learning and, more specifically, rehabilitation therapy after a stroke. Current challenges of this research are a high variability in the achieved stimulation effects across subjects and an incomplete understanding of the interplay between its underlying mechanisms. A key component to understanding the stimulation mechanism is considered the electric field, which is exerted by the electrodes and distributes in the subjects' heads. A principle concept assumes that brain areas exposed to a higher electric field strength likewise experience a higher stimulation. This attributes the positioning of the electrodes a decisive role for the stimulation. However, the electric field distributes non-uniformly across subjects' brains due to the heterogeneous electrical conductivity profile of the human head. Moreover, the distribution pattern is variable between subjects due to their individual anatomy. A trivial estimation of the distribution of the electric field solely based on the position of the stimulating electrodes is, therefore, not precise enough for a well-targeted stimulation. Computer-based biophysical simulations of transcranial electric stimulation enable the individual approximation of the distribution pattern of the electric field in subjects based on their medical imaging data. They are, thus, increasingly employed for the planning and verification of tDCS applications and constitute an essential tool on the way to individualized stroke rehabilitation therapy. Software pipelines facilitating the underlying individualized processing for a wide range of researchers have been developed for use in healthy adults over the past years, but, to date, the simulation of patients with abnormal brain tissue and structure disrupting lesions remains a non-trivial task. Therefore, the presented project was dedicated to establishing and practically applying a tES simulation workflow. The processing of medical imaging data of neurological patients with abnormal brain tissue was a central requirement in this process. The basic simulation workflow was first designed and validated for the simulation of healthy adults. This comprised compiling medical image processing algorithms into a comprehensive workflow to identify and extract electrically relevant physiological structures of the human head and upper torso from magnetic resonance images. The identified structures had to be converted to computational models. The underlying physical problem of electric volume conduction in biological tissue was solved by means of numeric simulation. Over the course of normal aging, the brain is subjected to structural alterations, among which a loss of brain volume and the development of microscopic alterations of its fiber structure are the most relevant. In a second step, the workflow was, thus, extended to incorporate these phenomena of normal aging. The main challenge in this subproject was the biophysical modeling of the altered brain microstructure as the resulting alterations to the conductivity profile of the brain were so far not quantified in the literature. Therefore, the augmentation of the workflow most notably included the modeling of uncertain electrical properties. With this, the influence of the uncertain electrical conductivity of the biological structures of the human head on the electric field could be assessed. In a simulation study, including imaging data of 88 subjects, the influence of the altered brain fiber structure on the electric field was then systematically investigated. These tissue alterations were found to exhibit a highly localized and generally low impact. Finally, in a third step, tDCS simulations of stroke patients were conducted. Their large, structure-disrupting lesions were modeled in a more detailed manner than in previous stroke simulation studies, and they were physically, again, modeled by uncertain electrical conductivity resulting in uncertain electric field estimates. Individually simulated electric fields were related to the brain activation of 18 patients, considering the inherently uncertain electric field estimations. The goal was to clarify whether the stimulation exerts a positive influence on brain function in the context of rehabilitation therapy supporting brain reorganization following a stroke. While a weak correlation could be established, further investigation will be necessary to answer that research question.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms Bibliography
65

Prognosis after ST-elevation myocardial infarction: a study on cardiac magnetic resonance imaging versus clinical routine

de Waha, Suzanne, Eitel, Ingo, Desch, Steffen, Fuernau, Georg, Lurz, Philipp, Stiermaier, Thomas, Blazek, Stephan, Schuler, Gerhard, Thiele, Holger January 2014 (has links)
Background: This study aimed to evaluate the incremental prognostic value of infarct size, microvascular obstruction (MO), myocardial salvage index (MSI), and left ventricular ejection fraction (LV-EFCMR) assessed by cardiac magnetic resonance imaging (CMR) in comparison to traditional outcome markers in patients with ST-elevation myocardial infarction (STEMI) reperfused by primary percutaneous intervention (PCI). Methods: STEMI patients reperfused by primary PCI (n = 278) within 12 hours after symptom onset underwent CMR three days after the index event (interquartile range [IQR] two to four). Infarct size and MO were measured 15 minutes after gadolinium injection. T2-weighted and contrast-enhanced CMR were used to calculate MSI. In addition, traditional outcome markers such as ST-segment resolution, pre- and post-PCI Thrombolysis In Myocardial Infarction (TIMI)-flow, maximum level of creatine kinase-MB, TIMI-risk score, and left ventricular ejection fraction assessed by echocardiography were determined in all patients. Clinical follow-up was conducted after 19 months (IQR 10 to 27). The primary endpoint was defined as a composite of death, myocardial reinfarction, and congestive heart failure (MACE). Results: In multivariable Cox regression analysis, adjusting for all traditional outcome parameters significantly associated with the primary endpoint in univariable analysis, MSI was identified as an independent predictor for the occurrence of MACE (Hazard ratio 0.94, 95% CI 0.92 to 0.96, P <0.001). Further, C-statistics comparing a model including only traditional outcome markers to a model including CMR parameters on top of traditional outcome markers revealed an incremental prognostic value of CMR parameters (0.74 versus 0.94, P <0.001). Conclusions: CMR parameters such as infarct size, MO, MSI, and LV-EFCMR add incremental prognostic value above traditional outcome markers alone in acute reperfused STEMI.
66

Motorische Reorganisation bei Hirntumoren - eine fMRT-Verlaufsstudie

Frauenheim, Michael Thomas 18 June 2015 (has links)
Die funktionelle Magnetresonanztomographie (fMRT) mit einer Feldstärke von 3 T ist in der prächirurgischen Nutzen-Risiko-Evaluation von Patienten mit Hirntumoren in bzw. im Bereich funktionell bedeutsamer Regionen, wie beispielsweise in Nachbarschaft zum Sulcus centralis, gut etabliert. Das Konzept der Neuroplastizität umfasst unter anderem Mechanismen zur zerebralen kortikalen Reorganisation nach Hirnschädigung. Ziel der vorliegenden prospektiven fMRT-Verlaufsstudie ist die Evaluation der noch wenig bekannten längerfristigen funktionellen Veränderungen des Gehirns nach neurochirurgischer Intervention. Zu diesem Zwecke wurden 14 Patienten mit Hirntumoren innerhalb oder in der Nähe des primären motorischen Cortex (MI) in die Studie eingeschlossen, welche sich einer neurochirurgischen Behandlung unterzogen. Bei 12 der Patienten wurde sowohl prä- als auch postoperativ eine funktionelle Bildgebung (fMRT) anhand des motorischen Paradigmas des unimanuellen und bimanuellen Fingertappens in einem 3 T MRT-Scanner durchgeführt. Wegen Bewegungsartefakten konnten lediglich 9 der Patienten in die weitere Auswertung eingeschlossen werden. Als Kontrollgruppe diente eine einmalige Untersuchung von neun gesunden Probanden. An längerfristigen Reorganisationsmustern konnten bei Patienten ohne Handparese sowohl die Rekrutierung der geschädigten als auch der intakten Hemisphäre des kortikalen motorischen Netzwerkes aufgezeigt werden. Tumorwachstum im Bereich des supplementär-motorischen Areals (SMA) ging mit einer bilateralen Rekrutierung der rostralen Portion des SMA (SMAr) einher. Die postoperative Reorganisation des motorischen Netzwerkes umfasste unter kontraläsionalen Fingertappen eine Lateralisierung der Aktivierung der SMAr zur nicht betroffenen Hemisphäre. Diese war umso ausgeprägter je größer das Tumorvolumen oder je näher der Tumor zur SMAr gelegen war. Demnach kann eine Dysfunktion der ipsilateralen SMAr präoperativ durch eine bilaterale und postoperativ durch eine kontraläsionale Rekrutierung kompensiert werden.
67

Impact of attenuation correction on clinical [18F]FDG brain PET in combined PET/MRI

Werner, Peter, Rullmann, Michael, Bresch, Anke, Tiepolt, Solveig, Lobsien, Donald, Schröter, Matthias, Sabri, Osama, Barthel, Henryk January 2016 (has links)
Background: In PET/MRI, linear photon attenuation coefficients for attenuation correction (AC) cannot be directly derived, and cortical bone is, so far, usually not considered. This results in an underestimation of the average PET signal in PET/MRI. Recently introduced MR-AC methods predicting bone information from anatomic MRI or proton density weighted zero-time imaging may solve this problem in the future. However, there is an ongoing debate if the current error is acceptable for clinical use and/or research. Methods: We examined this feature for [18F] fluorodeoxyglucose (FDG) brain PET in 13 patients with clinical signs of dementia or movement disorders who subsequently underwent PET/CT and PET/MRI on the same day. Multiple MR-AC approaches including a CT-derived AC were applied. Results: The resulting PET data was compared to the CT-derived standard regarding the quantification error and its clinical impact. On a quantitative level, −11.9 to +2 % deviations from the CT-AC standard were found. These deviations, however, did not translate into a systematic diagnostic error. This, as overall patterns of hypometabolism (which are decisive for clinical diagnostics), remained largely unchanged. Conclusions: Despite a quantitative error by the omission of bone in MR-AC, clinical quality of brain [18F]FDG is not relevantly affected. Thus, brain [18F]FDG PET can already, even now with suboptimal MR-AC, be utilized for clinical routine purposes, even though the MR-AC warrants improvement.
68

Grassmann variables and pseudoclassical Nuclear Magnetic Resonance

Damion, Robin A. January 2016 (has links)
The concept of a propagator is useful and is a well-known object in diffusion NMR experiments. Here, we investigate the related concept; the propagator for the magnetization or the Green’s function of the Torrey-Bloch equations. The magnetization propagator is constructed by defining functions such as the Hamiltonian and Lagrangian and using these to define a path integral. It is shown that the equations of motion derived from the Lagrangian produce complex-valued trajectories (classical paths) and it is conjectured that the end-points of these trajectories are real-valued. The complex nature of the trajectories also suggests that the spin degrees of freedom are also encoded into the trajectories and this idea is explored by explicitly modeling the spin or precessing magnetization by anticommuting Grassmann variables. A pseudoclassical Lagrangian is constructed by combining the diffusive (bosonic) Lagrangian with the Grassmann (fermionic) Lagrangian, and performing the path integral over the Grassmann variables recovers the original Lagrangian that was used in the construction of the propagator for the magnetization. The trajectories of the pseudoclassical model also provide some insight into the nature of the end-points.
69

Myeloarchitecture and Intrinsic Functional Connectivity of Auditory Cortex in Musicians with Absolute Pitch

Kim, Seung-Goo 01 May 2017 (has links)
Introduction This dissertation studied structures and functions of auditory cortex in musicians with a rare auditory perception called absolute pitch (AP) using an in-vivo neuroimaging technique magnetic resonance imaging (MRI). The absolute pitch is defined as an ability to recognize pitch chroma, which is musical naming in the twelve-tone equal-temperament (12-TET) system (e.g., “C#”), of any given tonal sound without external references. It has been of interest of many psychologists since the experimental methods have been introduced in psychology over a century. Early behavioral experiments reported many findings that were validated in later studies with computerized measurement of behaviors. Over the recent two decades, in-vivo neuroimaging studies have found alteration in structures and functions of the brains of musicians with AP compared to control musicians without AP. However, quantitative models on the behaviors of neural systems behind the AP have not been suggested yet. Of course, neuronal modeling is a challenging problem in cognitive neuroscience studies in general. In order to generate such models to explain auditory perceptions such as AP, detailed information on structures and functions of neural systems must be obtained. In this context, we examined microarchitecture of the auditory cortex in musicians with AP using ultra- high field MRI that currently enables the highest spatial resolution of in-vivo imaging at the moment. In addition, we examined the functional connectivity between the auditory cortex and the other regions of the whole cortex. In the dissertation, detailed introduction of the pitch chroma perception is given throughout the human auditory systems from peripheral apparatus to non-primary auditory cortex in the Chapter I. In-depth discussion on the in-vivo imaging techniques, image processing, and statistical inferences focusing on the strength and potential pitfalls of the methods and their common practice in the Chapter II. In the Chapter III and IV, I explained MRI studies of the PhD project in details with discussions on the findings. Finally in the Chapter V, I summarized the major findings and discuss possible interpretation based on the framework of ‘dual auditory pathway hypothesis’. Study of Myeloarchitecture In the first study (Chapter III), a novel MRI sequence named magnetization-prepared two rapid gradient echo (MP2RAGE) was used to investigate cortical myelination. Myeloarchitecture of cerebral cortex is the one of the important histological concepts to understand organization of cortical column as well as cytoarchitecture. Neurons in the cortex are not only linked to the other distant neurons through the white matter but also connected vertically and horizontally to adjacent neurons. These short/long-distance axonal connections form myeloarchitecture of the cortex. The MP2RAGE sequence estimates a physical quantity called longitudinal relaxation rates (R1), which is sensitive to myelin concentration of the tissue. When compared to control musicians without AP, we found greater R1 in the anterior part of the right supratemporal plane in the musicians with AP. Given the finding was specific to the middle depth of cortex, the finding is unlikely related to long-distance axonal connections but likely to local connections. The precise location of the group difference was determined as the right planum polare in the template brain as well as in all individual brains. Based on the finding, I speculated that the working principles of the AP processes might be related to the dual auditory pathway hypothesis. In the theory, spatial auditory information is processed along the dorsal pathway (from the primary auditory cortex, to planum temporale, supramarginal gyrus, parietal lobules, and dorsolateral prefrontal cortex) whereas non-spatial auditory information is processed along the ventral pathway (from the primary auditory cortex to planum polare, temporal pole, anterior insular, and ventrolateral prefrontal cortex) in analogous to visual system. Because pitch chroma is spatially invariant property of an auditory object, and also it is less useful for auditory scene segregation compared to separation based on general pitch range (i.e., pitch height), I suggested the observation of cortical myelin in the anterior non-primary auditory cortex might be related to the absolute recognition of pitch chroma in AP listeners. Another potential implication of the heavy myelination is the function of myelination in neural development. In a rat model, it was demonstrated that the myelination of cortex triggers protein interactions that greatly restrict neuroplasticity after the ‘critical period’ of normal development. From genetic studies, it has been found that the onset of musical training is crucial in the acquisition of AP. Since the planum polare is related to pitch chroma processing, the increase of myelination in this region might indicate the preservation of the pitch chroma representation. Study of Intrinsic Functional Connectivity In the second study (Chapter IV), to further test the hypothesis that this highly myelinated planum polare works differently in the auditory networks, analysis of intrinsic functional connectivity using functional MRI (fMRI) measurement acquired during resting was performed. Although spontaneous neural activities during resting was once regarded as Gaussian noise without particular information, extensive researches revealed that the resting-state data (fMRI and also M/EEG) bears substantial information on the subnetworks of brain that subserve various perceptual and cognitive functions. Particularly for the perception of AP, it has been known that spontaneous and unintended recognition of pitch chroma from ambient sounds such as the siren of an ambulance. Thus it is reasonable to assume that the AP-specific network would be constantly active even at rest. From the resting-state fMRI data, greater cross-correlations between the right planum polare, which was found to be highly myelinated, and several cortical areas including the right lateral superior temporal gyrus, the anterior insula, and the left inferior frontal cortex were found in musicians with better AP performance. Moreover, greater cross-coherences between the right planum polare and the medial part of superior frontal gyrus, the anterior cingulate cortex, and the left planum polare were found in musicians with greater AP performance. As speculated, the involvement of the ventral auditory pathway in the AP-specific resting state network was strongly suggested from the tightened functional coupling between anterior supratemporal planes and the left inferior frontal cortex. Interestingly, the right planum polare exhibited greater cross-coherence with the important hub regions of the default mode network, i.e., anterior cingulate cortex and medial parts of the superior frontal cortex and the orbitofrontal cortex, implicating a link between the auditory network and default-mode network in AP listeners. This might be related to constant AP processes in AP listeners, which results in spontaneous and unintentional recognition of AP. Conclusion In the dissertation, novel MRI data from musicians with AP were provided adding knowledge of the myeloarchitectonic characteristics and related intrinsic functional connectivity of the auditory cortex to the current understanding on the neural correlates of AP. The findings were in favor of the proposed involvement of the ventral auditory pathway, which is known for processing spatially invariant properties of auditory objects. Further studies on neural behaviors of the auditory cortex in relation to the myeloarchitecture are needed in developing computational models of AP in the future. / Einleitung Diese Dissertation untersucht Strukturen und Funktionen des auditorischen Kortex in Musikern mit einer seltenen auditorischen Wahrnehmen, dem absoluten Gehör (aG), mit Hilfe des in-vivo Bildgebungsfahrens der Magnetresonanztomographie (MRT). Das absolute Gehör bezeichnet die Fähigkeit die Tonklasse (z.B. „C#“) innerhalb des 12-tönigen Systems gleichmäßiger Stimmung (12-TET) ohne externe Referenz benennen zu können. Das Phänomen des absoluten Gehöres ist Gegenstand psychologischer Untersuchungen seitdem die experimentellen Methoden vor über einem Jahrhundert vorgestellt wurden. Erste behaviorale Experimente berichteten zahlreiche Ergebnisse, die später in computer-gestützten Messverfahren validiert werden konnten. In den letzten 20 Jahren konnten Studien, unter Nutzung bildgebender Verfahren, Veränderungen in der Struktur und Funktion in den Gehirnen von Musikern mit absolutem Gehör feststellen. Bisher wurden jedoch noch keine quantitativen Modelle vorgestellt, die das Verhalten neuronaler Systeme beschreiben, die dem absoluten Gehört zugrunde liegen. Die Modellierung neuronaler Systeme stellt ein anspruchsvolles Problem der gesamten kognitiven Neurowissenschaften dar. Detaillierte Informationen bezüglich der Struktur und Funktion des neuronalen Systems müssen gesammelt, um mit Hilfe von Modelle auditorische Empfindungen wie das absolute Gehör erklären zu können. In diesem Zusammenhang haben wir die Mikroarchitektur des auditorischen Kortex von Musiker mit absolutem Gehör mit Hilfe eines ultrahohem Feld-MRTs untersucht; eine Methode mit der derzeit höchsten räumlichen Auflösung aller in-vivo Bildgebungsverfahren. Außerdem wurde die funktionelle Konnektivität zwischen dem auditorischen Kortex und anderen Regionen des gesamten Kortex untersucht. In Kapitel I der Dissertation wird detailliertes Grundwissen zur Empfindung von Tonklassen, vom menschlichen auditorischen System bis zum nicht-primären auditorischen Kortex, vermittelt. Eine vertiefte Diskussion der in-vivo Bildgebungsverfahren, der Bildverarbeitung und den statistischen Rückschlüssen ist Thema von Kapitel II, mit einem Fokus auf der üblichen Verwendung, den Stärken und potentiellen Fehlern der verwendeten Methoden. In den Kapiteln III und IV habe ich die MRT-Studien der Doktorarbeit erklärt und die Ergebnisse diskutiert. Kapitel V fasst die wesentlichen Forschungsergebnisse zusammen und diskutiert eine mögliche Interpretation der Ergebnisse auf Grundlage der Dual Auditory Pathway Hypothese. Untersuchung der Myelinarchitektur In der ersten Studie (Kapitel III) wurde eine neuartige MRT Sequenz, die magnetization-prepared two rapid gradient echo (MP2RAGE) Sequenz, genutzt um die kortikale Myelinisierung zu untersuchen. Die Myelinarchitektur des zerebralen Kortex ist eine der wichtigsten histologischen Konzepte, um sowohl die Organisation einer kortikalen Kolumne als auch die Zytoarchitektur zu verstehen. Die Neuronen des Kortex sind nicht nur an entfernte Neuronen über die weiße Substanz gekoppelt, sondern auch durch vertikale und horizontale Verbindungen an unmittelbar benachbarte Neuronen. Diese kurzen und langen axonalen Verbindungen formen die Myelinarchitektur des Kortex. Die MP2RAGE Sequenz bewertet die longitudinalen Relaxations Raten (R1), welche sensitiv für die Myelinkonzentration des untersuchten Gewebes ist. Verglichen mit einer Kontrollgruppe von Musikern ohne aG konnten wir einen höheren R1- Wert im anterioren Teil der rechten supra-temporalen Ebene in Musikern mit aG feststellen. Da das Ergebnis spezifisch für eine mittlere Tiefe des Kortex war ist es wahrscheinlicher, dies auf lokale Verbindungen als auf lange axonale Verbindungen zurückzuführen. Als genauer Ort der Gruppendifferenz wurde das rechte planum polare sowohl in einem idealisierten Gehirn als auch in den individuellen Gehirnen der Probanden festgestellt. Aufgrund dieses Ergebnisses habe ich die Hypothese aufgestellt, dass die Wirkungsweise des absoluten Gehörs mit der Dual Auditory Pathway-Theorie zusammenhängt. Diese Theorie besagt, dass räumliche auditorische Information entlang einer dorsalen Bahn (vom primären auditorischen Kortex zum planum temporale, supramarginalen Gyrus, Parietallappen und dorsolateralen präfrontalen Kortex) und nicht-räumliche Informationen entlang einer ventralen Bahn (vom primären auditorischen Kortex zum planum polare, Temporalpol, anterior insular und ventrolateralen präfrontalen Kortex), ähnlich dem visuellen System, verarbeitet werden. Da die Tonklasse eine räumlich invariante Eigenschaft eines auditorischen Objektes ist und es zudem für die auditorische Szenenunterscheidung weniger bedeutsam ist als die generelle Tonhöhe, habe ich die Vermutung angestellt, dass das kortikale Myelin im anterioren nicht-primären auditorischen Kortex mit dem absoluten Gehört für die Tonklasse im Zusammenhang steht. Eine weitere Implikation der starken Myelinisierung betrifft die Funktion von Myelin in der neuronalen Entwicklung. Im Tiermodell einer Ratte konnte gezeigt werden, dass die Myelinisierung des Kortex Proteininteraktionen auslöst, die die Neuroplastizität nach einer ‚kritischen Periode‘ der normalen Entwicklung erheblich einschränkt. Genetische Studien haben gezeigt, dass der Beginn der musikalischen Ausbildung für die Entwicklung des absoluten Gehöres entscheidend ist. Da das planum polare mit der Verarbeitung von Tonklassen in Verbindung gebracht wird, könnte ein Anstieg der Myelinisierung in diesem Bereich einen Erhalt der Tonklassenrepräsentation bedeuten. Untersuchung der intrinsischen funktionellen Konnektivität In der zweiten Studie (Kapitel IV) wurde die Hypothese, dass das stark myelinisierte planum polare in den auditorischen Netzwerken verschieden wirkt, mittels funktioneller MRT (fMRT) im entspannten Wachzustand weiter untersucht. Spontane Hirnaktivität wurde lange Zeit als Gaußsches Rauschen ohne spezielle Informationen angesehen. Umfangreiche Studien konnten jedoch zeigen, dass Messungen des Ruhezustandes, sowohl fMRT als auch M/EEG, Information bezüglich der Sub-Netzwerke tragen, die Hirnfunktionen der Wahrnehmung und Kognition unterstützen. Besonders in Bezug auf die Wahrnehmung mit absolutem Gehör konnte festgestellt werden, dass Umgebungstöne wie die Sirene eines Krankenwagens unbewusst hinsichtlich der Tonklasse erkannt werden. Diese Erkenntnis stützt die Annahme, dass das aG-Netzwerk auch im Ruhezustand aktiv ist. Mit Hilfe der fMRT-Daten wurde festgestellt, dass die Kreuzkorrelation zwischen dem stark myelinisierten rechten planum polare und weiteren kortikalen Arealen wie dem rechten lateral- superioren temporalen Gyrus, der anterioren insula und dem linken inferior-frontalen Kortex in Musikern mit besserer aG-Performanz erhöht ist. Weiterhin wurde eine erhöhte Kreuzkorrelation zwischen dem rechten planum polare und dem medialen Teil des superior-frontalen Gyrus, dem anterioren cingulate Kortex und dem linken planum polare in Musikern mit noch besser aG- Performanz festgestellt. Die erhöhte funktionelle Kopplung der anterioren supra-temporalen Ebene mit dem linken inferior-frontalen Kortex bekräftigt die Hypothese, dass der ventrale auditorische Pfad in dem aG- spezifischen Netzwerk des Ruhezustands beteiligt ist. Bemerkenswerterweise zeigte das rechte planum polare eine erhöhte Kreuzkorrelation mit wichtigen Hub-regionen des Default-Mode Netzwerkes, also dem anterioren cingulate Kortex und medialen Teilen des superior-frontalen Kortex, sowie dem orbito-frontalen Kortex. Dies bedeutet eine Verknüpfung des auditorischen Netzwerkes und des Default-Mode Netzwerkes in Menschen mit absolutem Gehör und könnte mit aG-Prozessen zusammenhängen, die die spontane und unbewusste Erkennung des absoluten Gehörs erlauben. Schlussfolgerung In dieser Dissertation wurden MRT-Daten von Musikern mit absolutem Gehör untersucht und damit zur Erweiterung des Wissensstandes bezüglich der Myelinarchitektur und der damit zusammenhängenden funktionellen Konnektivität des auditorischen Kortex beigetragen. Die Ergebnisse sprechen zugunsten der Einbindung des ventralen auditorischen Pfades, bekannt für die Verarbeitung räumlich-invarianter Eigenschaften auditorischer Objekte. Weitere Untersuchungen bezüglich des neuronalen Verhaltens des auditorischen Kortex in Verbindung mit der Myelinarchitektur sind notwendig, um quantitative Modelle des absoluten Gehörs entwickeln zu können.
70

Entwicklung eines 7 Tesla-MRT-Algorithmus zur farbkodierten Volumetrie der Mamillarkörper in vivo bei Bipolarer Störung – eine Pilotstudie

Freund, Nora 03 June 2017 (has links)
Involviert in Netzwerke für das episodische Gedächtnis sowie als Bestandteil des Hypothalamus und des limbischen Systems stellen sich die im Zwischenhirn gelegenen Mamillarkörper als Zielstruktur im Kontext affektiver Störungen dar. Bislang waren die Mamillarkörper diesbezüglich lediglich in einer postmortem durchgeführten Studie Gegenstand der Forschung; es liegen keine Untersuchungen mit Hilfe der 7 Tesla-Magnetresonanztomografie vor. Um diese neuen Möglichkeiten der in vivo-Volumetrie im Submillimeterbereich auszuschöpfen, wurde auf Grundlage einer farbkodierten Darstellung ein detaillierter Algorithmus entwickelt, der sich als Hauptergebnis der vorliegenden Arbeit als hoch reliabel erwies. In der vorliegenden Pilotstudie wurde darüber hinaus das Mamillarkörper-Volumen von 14 Patientinnen und Patienten mit einer Bipolaren Störung und 20 gesunden Kontrollpersonen anhand von hochaufgelösten T1-gewichteten MRT-Bildern bestimmt. Ein signifikanter Unterschied zwischen den beiden Gruppen konnte nicht nachgewiesen werden, ebenso kein Unterschied zwischen den Geschlechtern. Es konnte gezeigt werden, dass das Volumen der Mamillarkörper signifikant invers mit dem Alter der ProbandInnen korreliert. Des Weiteren wurde eine signifikante positive Korrelation mit dem Gesamthirnvolumen der ProbandInnen festgestellt. Krankheitsschwere und Episodenzahl hingegen hatten keinen Einfluss auf das Mamillarkörper-Volumen. Die Ergebnisse dieser Pilotstudie sollten anhand einer größeren Stichprobe überprüft werden.

Page generated in 0.1074 seconds