• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 22
  • 11
  • 8
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 42
  • 37
  • 25
  • 23
  • 22
  • 22
  • 17
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Coupled Field Modeling of Gas Tungsten Arc Welding

Sen, Debamoy 08 August 2012 (has links)
Welding is used extensively in aerospace, automotive, chemical, manufacturing, electronic and power-generation industries. Thermally-induced residual stresses due to welding can significantly impair the performance and reliability of welded structures. Numerical simulation of weld pool dynamics is important as experimental measurements of velocities and temperature profiles are difficult due to the small size of the weld pool and the presence of the arc. From a structural integrity perspective of welded structures, it is necessary to have an accurate spatial and temporal thermal distribution in the welded structure before stress analysis is performed. Existing research on weld pool dynamics simulation has ignored the effect of fluid flow in the weld pool on the temperature field of the welded joint. Previous research has established that the weld pool depth/width (D/W) ratio and Heat Affected Zone (HAZ) are significantly altered by the weld pool dynamics. Hence, for a more accurate estimation of the thermally-induced stresses it is desired to incorporate the weld pool dynamics into the analysis. Moreover, the effects of microstructure evolution in the HAZ on the mechanical behavior of the structure need to be included in the analysis for better mechanical response prediction. In this study, a three-dimensional model for the thermo-mechanical analysis of Gas Tungsten Arc (GTA) welding of thin stainless steel butt-joint plates has been developed. The model incorporates the effects of thermal energy redistribution through weld pool dynamics into the structural behavior calculations. Through material modeling the effects of microstructure change/phase transformation are indirectly included in the model. The developed weld pool dynamics model includes the effects of current, arc length, and electrode angle on the heat flux and current density distributions. All the major weld pool driving forces are included, namely surface tension gradient, plasma drag force, electromagnetic force, and buoyancy. The weld D/W predictions are validated with experimental results. They agree well. The effects of welding parameters (like welding speed, current, arc length, etc.) on the weld D/W ratio are documented. The workpiece deformation and stress distributions are also highlighted. The transverse and longitudinal residual stress distribution plots across the weld bead and their variations with welding speed and current are also provided. The mathematical framework developed here serves as a robust tool for better prediction of weld D/W ratio and thermally-induced stress evolution and distribution in a welded structure by coupling the different fields in a welding process. / Ph. D.
112

Modelling of Laser Welding of Aluminium using COMSOL Multiphysics

Chen, Jie January 2020 (has links)
This thesis presents a modelling approach of laser welding process of aluminium alloy from the thermo-mechanical point of view to evaluate the occurrence of hot cracking based on simulation results and relevant criteria. The model was created stepwise in COMSOL Multiphysics, starting with the thermal model where heat conduction of solid and liquid phase was computed. Then the CFD model was created by involving the driving forces of liquid motion in the weld pool, i.e. natural convection and Marangoni effect. Lastly, the temperature profile calculated by the CFD model was loaded into the mechanical model for computation of thermal stress and strain. The mechanical results were required in  criteria for measuring the  susceptibility of hot cracking. The main findings include that Marangoni effect plays a dominant role in generating the fluid flow and convective heat flux in the weld pool, thus enhancing the heat dissipation and lowering temperature in the workpiece. By contrast, such temperature reduction caused by the air convection, radiation and natural convection is negligible. The welding track further from the clamped side experiences smaller transversal residual stress, but it does not necessarily suggest higher susceptibility to hot cracking according to the applied criteria. It can be concluded judging from current results that these first models of laser welding process work satisfactorily. There is still a work to do to obtain the full maturity of this model due to its limitation and some assumptions made for simplicity. / Denna avhandling presenterar en modelleringsmetod för lasersvetsningsprocessen av aluminiumlegering ur termomekanisk synvinkel för att utvärdera förekomsten av het sprickbildning baserat på simuleringsresultat och relevanta kriterier. Modellen skapades stegvis i COMSOL Multiphysics, med början med den termiska modellen där värmeledning av fast och flytande fas beräknades. Sedan skapades CFD-modellen genom att involvera drivkrafterna för flytande rörelse i svetsbassängen, dvs. naturlig konvektion och Marangoni-effekt. Slutligen laddades temperaturprofilen beräknad av CFD-modellen in i den mekaniska modellen för beräkning av termisk stress och töjning. De mekaniska resultaten krävdes i kriterier för att mäta känsligheten för het sprickbildning. De viktigaste resultaten inkluderar att Marangoni-effekten spelar en dominerande roll när det gäller att generera vätskeflödet och konvektivt värmeflöde i svetsbassängen, vilket förbättrar värmeavledningen och sänker temperaturen i arbetsstycket. Däremot är sådan temperaturreduktion orsakad av luftkonvektion, strålning och naturlig konvektion försumbar. Svetsbanan längre från den fastspända sidan upplever mindre tvärgående restspänning, men det föreslår inte nödvändigtvis högre känslighet för hetsprickning enligt de tillämpade kriterierna. Man kan dra slutsatsen utifrån aktuella resultat att dessa första modeller av lasersvetsningsprocesser fungerar tillfredsställande. Det finns fortfarande ett arbete att göra för att få full mognad för denna modell på grund av dess begränsning och vissa antaganden för enkelhetens skull.
113

Buoyancy-thermocapillary convection of volatile fluids in confined and sealed geometries

Qin, Tongran 27 May 2016 (has links)
Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is a classic problem of fluid mechanics. It has attracted increasing attentions recently due to its relevance for two-phase cooling. Many of the modern thermal management technologies exploit the large latent heats associated with phase change at the interface of volatile liquids, allowing compact devices to handle very high heat fluxes. To enhance phase change, such cooling devices usually employ a sealed cavity from which almost all noncondensable gases, such as air, have been evacuated. Heating one end of the cavity, and cooling the other, establishes a horizontal temperature gradient that drives the flow of the coolant. Although such flows have been studied extensively at atmospheric conditions, our fundamental understanding of the heat and mass transport for volatile fluids at reduced pressures remains limited. A comprehensive and quantitative numerical model of two-phase buoyancy-thermocapillary convection of confined volatile fluids subject to a horizontal temperature gradient has been developed, implemented, and validated against experiments as a part of this thesis research. Unlike previous simplified models used in the field, this new model incorporates a complete description of the momentum, mass, and heat transport in both the liquid and the gas phase, as well as phase change across the entire liquid-gas interface. Numerical simulations were used to improve our fundamental understanding of the importance of various physical effects (buoyancy, thermocapillary stresses, wetting properties of the liquid, etc.) on confined two-phase flows. In particular, the effect of noncondensables (air) was investigated by varying their average concentration from that corresponding to ambient conditions to zero, in which case the gas phase becomes a pure vapor. It was found that the composition of the gas phase has a crucial impact on heat and mass transport as well as on the flow stability. A simplified theoretical description of the flow and its stability was developed and used to explain many features of the numerical solutions and experimental observations that were not well understood previously. In particular, an analytical solution for the base return flow in the liquid layer was extended to the gas phase, justifying the previous ad-hoc assumption of the linear interfacial temperature profile. Linear stability analysis of this two-layer solution was also performed. It was found that as the concentration of noncondensables decreases, the instability responsible for the emergence of a convective pattern is delayed, which is mainly due to the enhancement of phase change. Finally, a simplified transport model was developed for heat pipes with wicks or microchannels that gives a closed-form analytical prediction for the heat transfer coefficient and the optimal size of the pores of the wick (or the width of the microchannels).
114

Les fluctuations de surface pour mesurer les propriétés de systèmes complexes en l'absence de sollicitation

Pottier, Basile 26 November 2013 (has links) (PDF)
La dynamique des fluctuations thermiques d'un milieu révèle les propriétés de ce milieu, sans qu'il soit nécessaire de le solliciter. Afin d'exploiter ce principe, nous avons mis au point une technique optique destinée à mesurer des fluctuations spontanées de hauteur de surfaces libres, basée sur la mesure de la déflexion d'un laser réfléchi à la surface. Nous montrons que l'on peut ainsi mesurer les fluctuations de surface de milieux très variés, allant des liquides peu visqueux aux solides viscoélastiques. Les propriétés viscoélastiques du milieu sondé peuvent être déterminées à partir du spectre expérimental des fluctuations. On compare les valeurs obtenues avec des mesures rhéométriques conventionnelles, la technique s'avère être un moyen fiable pour caractériser les propriétés rhéologiques dans une gamme de fréquences allant de 0,1 Hz à quelques dizaines de kHz. Par ailleurs, on s'intéresse à l'influence du confinement sur les fluctuations de surface d'un liquide newtonien. On étudie l'effet du confinement en utilisant des substrats de différentes natures : solide plan, solide en relief et liquide. On montre que les fluctuations de surface dépendent fortement du substrat utilisé. On étudie en particulier le cas où le film liquide est déposé sur une surface solide plane. En créant un effet Marangoni induit par un gradient de température à la surface libre du liquide, on parvient à contrôler l'épaisseur du film sondé. On mesure ainsi les fluctuations de surface de films dont l'épaisseur varie entre 30 nanomètres et quelques micromètres. Les spectres mesurés sont sensibles à la condition hydrodynamique à l'interface liquide-solide et permettent d'évaluer une éventuelle longueur de glissement.
115

Dynamiques spéciales de gouttes non-mouillantes

Piroird, Keyvan 04 October 2011 (has links) (PDF)
Dans cette thèse, nous étudions à l'aide de plusieurs expériences la dynamique de gouttes non-mouillantes dans des situations où la gravité n'intervient pas, mais où d'autres forces, moins communes, sont à l'oeuvre. La première partie porte sur l'étude de gouttes d'oxygène liquide qui, en plus d'être en caléfaction sur un support à température ambiante, ont la particularité d'être susceptibles à la présence d'un champ magnétique. Nous étudions la force magnétique exercée sur ces gouttes ultra-mobiles et nous montrons qu'elles peuvent être déviées, ralenties, déformées, capturées et même parfois accélérées à l'aide d'un aimant. Dans la deuxième partie de ce travail, nous avons étudié une situation inverse, où nous avons cherché à mettre en mouvement une goutte non-mouillante initialement au repos. La goutte est cette fois faite d'huile se trouvant dans un tube capillaire rempli d'eau, et nous avons montré qu'un gradient de concentration en tensioactif provoque un mouvement spontané et permet à la goutte d'huile de s'échapper du tube. Cette expérience réalise ainsi une situation modèle de détergence. Une dynamique très particulière est mise en évidence à temps long : le mouvement est continu ou intermittent selon les paramètres de l'expérience.
116

Strömungsinstabilitäten bei Stoffübergang und chemischer Reaktion an der ebenen Grenzfläche zwischen zwei nicht mischbaren Flüssigkeiten

Grahn, Alexander 31 March 2010 (has links) (PDF)
In verfahrenstechnischen Anlagen der Flüssig-Flüssig-Stoffübertragung kommt es an der Phasengrenze zwischen den nicht mischbaren Flüssigphasen häufig zur Ausbildung hydrodynamischer Instabilitäten. Sie sind mit komplexen Geschwindigkeitsfeldern in den Flüssigphasen, insbesondere in den grenzschichtnahen Regionen verbunden und führen zu einem starken Anstieg der pro Zeiteinheit übertragenen Stoffmenge. Die Lösung der Diffusionsgleichung reicht in diesem Fall zur Vorausberechnung des für Auslegungszwecke bedeutsamen Stoffdurchgangskoeffizienten nicht mehr aus. Chemische Reaktionen stellen Quellen oder Senken von Wärme und Stoff dar, die das Auftreten von Instabilitäten begünstigen und die mathematische Beschreibung zusätzlich erschweren. Im Rahmen der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zum Flüssig-Flüssig-Stoffübergang in einem vertikalen Kapillarspalt durchgeführt. Reaktionsfreie Stoffübergänge und solche mit einer exothermen chemischen Reaktion an der Phasengrenze zeigten eine große Vielfalt von Konvektionsstrukturen, wie Rollzellen, Thermiken und das doppeldiffusive Fingerregime. Die Visualisierung der Transportvorgänge erfolgte durch das Schattenschlierenverfahren. Die Beobachtungen wurden hinsichtlich geometrischer Eigenschaften von Konvektionsstrukturen sowie deren zeitlicher Änderung ausgewertet. Dazu zählten insbesondere das Längenwachstum von Thermiken und horizontale Wellenlängen von Fingerstrukturen. Zur mathematischen Beschreibung der Phänomene im Kapillarspalt wurde ein Modell entwickelt, welches auf den gekoppelten, zweidimensionalen Transportgleichungen von Impuls, Wärme und Stoff beruht. Es berücksichtigt dichte- und grenzflächenspannungsgetriebene Instabilitätsmechanismen sowie die besonderen Durchströmungseigenschaften des Kapillarspalts. Die Phasengrenze wurde als eben angenommen. Die Lösung der Modellgleichungen erfolgt auf numerischem Wege durch ein Computerprogramm. Das Modell ist in der Lage, die beobachteten Instabilitätsphänomene qualitativ richtig wiederzugeben. Mit Hilfe von Simulationsrechnungen konnte der Mechanismus aufgeklärt werden, der zum schnelleren Rückgang des Stoffdurchgangskoeffizienten im Rollzellenregime der rein grenzflächenspannungsgetrieben Instabilität im Vergleich zum Vorgang mit überlagerter Dichtekonvektion führt. Des Weiteren gelang der Nachweis des doppeldiffusiven Fingerregimes beim Stoffübergang mit exothermer Grenzflächenreaktion. Die berechnete Erhöhung des Stoffdurchgangskoeffizienten stimmt mit Angaben in experimentellen Arbeiten anderer Autoren überein.
117

Free surface films of binary liquid mixtures

Bribesh, Fathi January 2012 (has links)
Model-H is used to describe structures found in the phase separation in films of binary liquid mixture that have a surface that is free to deform and also may energetically prefer one of the components. The film rests on a solid smooth substrate that has no preference for any component. On the one hand the study focuses on static aspects by investigating steady states that are characterised by their concentration and film height profiles. A large variety of such states are systematically analysed by numerically constructing bifurcation diagrams in dependence of a number of control parameters. The numerical method used is based on minimising the free energy functional at given constraints within a finite element method for a variable domain shape. The structure of the bifurcation diagrams is related to the symmetry properties of the individual solutions on the various branches. On the other hand the full time dependent model-H is linearised about selected steady states, in particular, the laterally invariant, i.e.\ layered states. The resulting dispersion relations are discussed and related to the corresponding bifurcation points of the steady states. In general, the results do well agree and confirm each other. The described analysis is performed for a number of important cases whose comparison allows us to gain an advanced understanding of the system behaviour: We distinguish the critical and off-critical case that correspond to zero and non-zero mean concentration, respectively. In the critical case the investigation focuses on (i) flat films without surface bias, (ii) flat films with surface bias, (iii) height-modulated films without surface bias, and (iv) height-modulated films with surface bias. Each case is analysed for several mean film heights and (if applicable) energetic bias at the free surface using the lateral domain size as main control parameter. Linear stability analyses of layered films and symmetry considerations are used to understand the structures of the determined bifurcation diagrams. For off-critical mixtures our study is more restricted. There we consider height-modulated films without and with surface bias for several mean film heights and (if applicable) energetic bias employing the mean concentration as main control parameter.
118

Dynamics of Surfactants at Soft Interfaces using Droplet-Based Microfluidics

Riechers, Birte 21 December 2015 (has links)
No description available.
119

Etude expérimentale et numérique d'un essai de soudage TIG statique et estimation des paramètres du flux de chaleur / Static GTAW experimental and numerical investigations and heat flux parameter estimation

Unnikrishnakurup, Sreedhar 29 January 2014 (has links)
Le procédé de soudage à l'arc sous atmosphère inerte (TIG) est souvent employé pour des assemblages nécessitant une grande qualité du joint soudé. Les propriétés du joint soudé dépendent essentiellement du cycle thermique imposé par l'opération de soudage, de la composition chimique du matériau métallique et des mouvements convectifs du métal fondu dans le bain de fusion. L'écoulement du métal liquide dans le bain de fusion modifie la distribution de température en son sein et à proximité, ainsi que la forme géométrique du joint. Afin d'améliorer l'opération de soudage TIG, par exemple pour accroitre la productivité ou éviter des défauts rédhibitoires, il est nécessaire de bien comprendre les phénomènes physiques mis en jeu dans le bain de fusion ainsi que l'effet des paramètres opératoires (intensité, hauteur d'arc, gaz …) sur ces phénomènes physiques. Dans le but d'appréhender les phénomènes mis en jeu au cours de l'opération TIG et dans le bain de fusion, un modèle multi-physique 2D axisymétrique a été établi et résolu par la méthode des éléments finis (MEF). Les forces telles que Lorentz (électromagnétique), Marangoni (Tension superficielle), Boussinesq et la force de cisaillement du plasma d'arc ont été prises en compte au niveau du bain de fusion. Le modèle TIG établi est utilisé pour prédire la distribution de température et la distribution des vitesses dans le bain de fusion ainsi que la forme géométrique du bain de fusion. Un protocole expérimental a été développé dans le but de valider le modèle proposé. Pour cela, une opération de soudage TIG stationnaire (pas de mouvement de la torche) a été réalisée sur un disque métallique. L'opération a été contrôlée par des mesures de température, par une observation de la formation et de l'évolution de la surface du bain de fusion avec une caméra rapide et un enregistrement des paramètres opératoires (intensité et tension). Toutes les données sont synchronisées entre elles pour permettre une analyse expérimentale pertinente. La confrontation des résultats expérimentaux avec le modèle multi-physique du soudage TIG a fait apparaître une assez bonne adéquation, mais des différences existent, essentiellement liées à la méconnaissance des paramètres décrivant le flux de chaleur utilisé dans la simulation. Le flux de chaleur a été modélisé par une fonction Gaussienne qui nécessite la connaissance du rendement du procédé TIG et la distribution spatiale (ou rayon de la Gaussienne). L'estimation de ces paramètres a été réalisée par une méthode inverse. Cette méthode inverse a consisté à estimer les paramètres inconnus à partir des données expérimentales disponibles. La méthode d'optimisation dite de Levenberg-Marquardt, associée à une technique de régularisation itérative, a été utilisée pour estimer les paramètres. La pertinence et la robustesse de cette méthode ont été validées au travers de plusieurs cas numériques ; soit des cas utilisant des données « exactes » ou des données « bruitées ». Trois types d'erreurs ont été analysés séparément : bruit de mesure, erreur sur la position du capteur et imprécision sur la valeur des propriétés thermophysiques. Les deux dernière erreurs sont celles qui impactent fortement le résultat de l'estimation, essentiellement l'estimation du rendement du procédé TIG. Enfin, une partie des données expérimentales a été utilisée pour résoudre le problème inverse. Les paramètres ont été estimés avec une marge d'erreur inférieure à 10% et ils sont en bon accord avec les valeurs trouvées dans la littérature. / Gas Tungsten Arc Welding (GTAW) process is generally used for assemblies that requires high quality weld joint. The microstructure and the weld joint relies mainly on the thermal cycle due to the welding operation, the chemical composition of the metallic material and the complex flow of molten metal in the weld pool. Moreover the fluid flow in the weld pool play a major role in the temperature distribution and the final weld pool shape. Better understanding of the physical phenomena involved in the welding operation, more exactly in the weld pool, are the fundamental step for improving the GTAW operation, for example increase the productivity or avoid defects. In the present research work, a two dimensional axi-symmetric multiphysics model was established in order to predict the weld pool shape evolution in the frame of a stationary Gas Tungsten Arc Welding using a finite element numerical approach. The weld pool model included various driving forces such as self-induced electromagnetic (Lorentz force), surface tension (Marangoni force), buoyancy and the arc plasma drag force. The stated GTAW model is used for predicting the velocity and temperature distribution in the fusion zone and the final weld pool shape. In order to validate the GTAW model, an experimental set up was defined for synchronizing the acquisition of time dependent data such as temperature, weld pool radius and welding process parameters (current and voltage). Image processing algorithms were developed for the time dependent weld pool size identification from the high speed camera images. Comparison between experimental and calculated data exhibited important discrepancies on the temperature field and weld pool radius. These discrepancies are due to the incoming heat flux from the arc plasma into the work piece. The heat flux was modeled with a Gaussian function itself described with few parameters;two of these required to be estimated: GTAW efficiency and Gaussian distribution.An inverse approach is used for estimating these parameters from the available experimental data: temperature, weld pool radius and macrographs. The Levenberg-Marquardt method is used to solve the inverse heat transfer problem coupled to an iterative process regularization. Afterward the inverse heat transfer problem was investigated through few numerical cases in order to verify its robustness to three sorts of error in the input data (measurement noise, sensor location error and inaccuracies associated with the thermophysical properties). The inverse approach was robust to errors introduced on measurement data. However, errors on the position of sensors or on the knowledge of material thermo-physical properties are problematic on the GTAW efficiency estimation. Finally the inverse problem was solved with experimental measurement. The estimated parameters are in good agreement with the literature. The evaluated error on the estimated parameters is less than 10%.
120

Vermeidungsstrategien fluiddynamischer Effekte beim Einsatz von Schnellerwärmungstechnologien in der Warmumformung

Opitz, Tobias 20 January 2021 (has links)
Aufgrund fluiddynamischer Effekte bei der Schnellerwärmung für die Warmumformung wird die Applikation der Technologie erschwert. Die vorliegende Arbeit thematisiert diesen Effekt und evaluiert die Triebkräfte sowohl numerisch als auch im Experiment. Aufbauend darauf werden Vermeidungsstrategien aufgezeigt und experimentell validiert um eine Verschiebung der Beschichtung zu verhindern. Es können insbesondere die temperatursensitive Marangonikraft als auch die magnethydrodynamische Wirkung der Lorentzkraft bei einer induktiven Erwärmung als Haupttriebkräfte identifiziert werden, die sich aufgrund identischer Kraftvektorrichtungen überlagern und verstärken. Es hat sich gezeigt, dass für den vorliegenden Fall einer 20-30 μm dünnen AlSi-Beschichtung die Marangonikraft gegenüber der Lorentzkraft um einen Faktor von mindestens 68 überwiegt. Ein vergleichbarer Effekt ist auch bei konduktiver Erwärmung zu beobachten. Hinsichtlich möglicher Vermeidungsstrategien einer globalen Beschichtungsverschiebung bietet die Applikation von lokalen Flussbarrieren mittels Laser, Induktion oder Walztexturierung, sowie das Vermeiden einer freien Flüssigkeitsoberfläche durch Aufbringen einer Zusatzbeschichtung, das größte Potential. In der zweiten Versionierung der Dissertationsschrift wurde auf S. IV im Vorwort, sowie auf S.72, Kapitel 4.2 eine ergänzende Nennung eines Instituts und Kooperationspartners hinzugefügt. / The application of fast heating technologies for hot forming is hindered by fluiddynamic effects and a resulting coating shift. Present thesis investigates this effect to evaluate the driving forces numerically as well as experimentally. Based on this evaluation, strategies are developed and investigated to avoid a global displacement of the AlSi-coating. In case of inductive fast heating the main driving force is represented by a superposition of Lorentzian forces as well as surface tension related Marangoni forces with a force vector pointing from hot to cold regions on the blank. The numerical evaluation shows that in case of 20-30 μm thin layers of AlSi the Marangoni force is at least 68 times higher than the Lorentz force and therefore represents the main driving force. A comparable effect is observable in case of conduction heating. Local flow barriers realized by Laser, inductive heating or texturing as well as the avoidance of a free liquid-surface due to application of additional coating layers show huge potential to prevent a global coating flow.

Page generated in 0.0332 seconds