• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 181
  • 77
  • 14
  • 10
  • 10
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 631
  • 165
  • 114
  • 86
  • 74
  • 58
  • 52
  • 49
  • 47
  • 47
  • 45
  • 43
  • 42
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Automatic Speech Recognition Quality Estimation

Jalalvand, Shahab January 2017 (has links)
Evaluation of automatic speech recognition (ASR) systems is difficult and costly, since it requires manual transcriptions. This evaluation is usually done by computing word error rate (WER) that is the most popular metric in ASR community. Such computation is doable only if the manual references are available, whereas in the real-life applications, it is a too rigid condition. A reference-free metric to evaluate the ASR performance is \textit{confidence measure} which is provided by the ASR decoder. However, the confidence measure is not always available, especially in commercial ASR usages. Even if available, this measure is usually biased towards the decoder. From this perspective, the confidence measure is not suitable for comparison purposes, for example between two ASR systems. These issues motivate the necessity of an automatic quality estimation system for ASR outputs. This thesis explores ASR quality estimation (ASR QE) from different perspectives including: feature engineering, learning algorithms and applications. From feature engineering perspective, a wide range of features extractable from input signal and output transcription are studied. These features represent the quality of the recognition from different aspects and they are divided into four groups: signal, textual, hybrid and word-based features. From learning point of view, we address two main approaches: i) QE via regression, suitable for single hypothesis scenario; ii) QE via machine-learned ranking (MLR), suitable for multiple hypotheses scenario. In the former, a regression model is used to predict the WER score of each single hypothesis that is created through a single automatic transcription channel. In the latter, a ranking model is used to predict the order of multiple hypotheses with respect to their quality. Multiple hypotheses are mainly generated by several ASR systems or several recording microphones. From application point of view, we introduce two applications in which ASR QE makes salient improvement in terms of WER: i) QE-informed data selection for acoustic model adaptation; ii) QE-informed system combination. In the former, we exploit single hypothesis ASR QE methods in order to select the best adaptation data for upgrading the acoustic model. In the latter, we exploit multiple hypotheses ASR QE methods to rank and combine the automatic transcriptions in a supervised manner. The experiments are mostly conducted on CHiME-3 English dataset. CHiME-3 consists of Wall Street Journal utterances, recorded by multiple far distant microphones in noisy environments. The results show that QE-informed acoustic model adaptation leads to 1.8\% absolute WER reduction and QE-informed system combination leads to 1.7% absolute WER reduction in CHiME-3 task. The outcomes of this thesis are packed in the frame of an open source toolkit named TranscRater -transcription rating toolkit- (https://github.com/hlt-mt/TranscRater) which has been developed based on the aforementioned studies. TranscRater can be used to extract informative features, train the QE models and predict the quality of the reference-less recognitions in a variety of ASR tasks.
182

UNGDOMARS SYN PÅ HEMLAGAD MAT & GEMENSAMMA MÅLTIDER : En kvalitativ intervjustudie / Youth’s view on food, meals and eating together : A qualitative interview study

Winqvist, Ida, Landskog Serra, Frida January 2022 (has links)
Bakgrund: Mat och måltider kan intas på olika sätt; med familjen, med vänner eller ensam. Familjemåltider och kompismåltider är två olika typer av måltider som ungdomar naturligt har i sin vardag. Forskning menar att familjemåltider värderas högt medan kompismåltiderna är ett sätt att umgås och skapa relationer med kompisar. Mat kan förebygga folksjukdomar och den sociala samvaron i en måltid uppskattas av ungdomar men det som äts i de olika måltidssituationerna påverkas av vem man äter med – familj, kompisar eller ingen. Syfte: Syftet med studien var att undersöka ungdomars syn på hemlagad mat, måltider och att äta tillsammans. Metod: Data samlades in genom 14 semistrukturerade kvalitativa intervjuer baserade på en frågeguide med öppna frågor. För att rekrytera intervjupersonerna kontaktades rektorer och HKK-lärare på grundskolor i två svenska kommuner. Intervjupersonerna hade fyllt 15 år och gick i årskurs nio. Exklusionskriterierna var framför allt geografiska. I enlighet med de fyra etiska huvudkraven behandlades all data konfidentiellt. Intervjupersonerna och deras skolor gavs fingerade namn. Resultat: Studiens deltagare upplevde hemlagad mat och familjemiddagar som norm. Hemlagad mat upplevdes generellt som nyttigare; fisk och köttbullar som man själv lagat var nyttigare eftersom man visste vad som fanns i. Det var vanligare att äta ute med kompisar än med familjen och kompismåltiden upplevdes som roligare än familjemåltiden men i kompismåltiden gavs onyttigare mat som pizza och hamburgare företräde. Slutsats: Vi ser utifrån vårt resultat att det finns ett gap mellan ungdomars kunskap om nyttig mat och deras förmåga att tillämpa denna kunskap i måltidssituationer utanför familjen. Vi ser därför en möjlighet att använda den här studiens resultat till att hitta nya undervisningskanaler där vi kan främja förmågan att välja nyttig mat i alla sammanhang. / Background: Food and meals can be consumed in various ways; with family, friends or alone. Research claims that family meals and meals with friends are different kinds of meals occuring naturally in day-to-day of youth. Research points to the appreciation of family meals whilst meals with friends constitute a way to hang out. Healthy food is known to being able to prevent some national diseases and being toghether is appreciated by youth. What is actually eaten in different meal situations, however, is affected by with whom you dine with – family, friends or no-one. Objective: The objective of this study was to inquire into youth’s view on food, meals and eating together. Method: Data was collected through 14 semi-structured qualitative interviews based on a guide with open end questions. To recrute the interviewees, principals and home economics teachers in compulsory schools in two Swedish communes were contacted. The interviewees had turned 15 and were in the final year of compulsory school. The exclusion criteria were mainly geographical. In compliance with the ethical demands, all data was treated confidentially and the interviewees and schools received ficticious names. Results: The participants perceived home cooked food and family dinners as norm. Home cooking was generally perceived as healthier; fish and meat balls prepared by one self was seen as healthier since one knew what was in them. It was more common to eat out with friends than with family and meals with friends were percieved as more entertaining than family meals. Meals with friends were often spontaneous acts where more unhealthy food, like pizzas and hamburgers, were prioritized. Conclusion: We can detect a gap between youth’s knowledge on healthy food and their ability to apply that knowledge in meal situations outside of the family. We therefore see a possibility to use the result of this study to find new channels of education so that youth can develop the ability to apply previously aquired knowledge on the importance of healthy food also when eating with friends.
183

From data to mathematical analysis and simulation in models in epidemiology and ecology

Clamer, Valentina January 2016 (has links)
This dissertation is divided into three different parts. In the first part we analyse collected data on the occurrence of influenza-like illness (ILI) symptoms regarding the 2009 influenza A/H1N1 virus pandemic in two primary schools of Trento, Italy. These data were used to calibrate a discrete-time SIR model, which was designed to estimate the probabilities of influenza transmission within the classes, grades and schools using Markov Chain Monte Carlo (MCMC) methods. We found that the virus was mainly transmitted within class, with lower levels of transmission between students in the same grade and even lower, though not significantly so, among different grades within the schools. We estimated median values of R0 from the epidemic curves in the two schools of 1.16 and 1.40; on the other hand, we estimated the average number of students infected by the first school case to be 0.85 and 1.09 in the two schools. This discrepancy suggests that household and community transmission played an important role in sustaining the school epidemics. The high probability of infection between students in the same class confirms that targeting within-class transmission is key to controlling the spread of influenza in school settings and, as a consequence, in the general population. In the second part, by starting from a basic host-parasitoid model, we study the dynamics of a 2 hosts-1 parasitoid model assuming, for the sake of simplicity, that larval stages have a fixed duration. If each host is subjected to density-dependent mortality in its larval stage, we obtain explicit conditions for coexistence of both hosts, as long as each 1 host-parasitoid system would tend to an equilibrium point. Otherwise, if mortality is density-independent, under the same conditions host coexistence is impossible. On the other hand, if at least one of the 1 host-parasitoid systems has an oscillatory dynamics (which happens under some parameter values), we found, through numerical bifurcation, that coexistence is favoured. It is also possible that coexistence between the two hosts occurs even in the case without density-dependence. Analysis of this case has been based on methods of approximation of the dominant characteristic multipliers of the monodromy operator using a recent method introduced by Breda et al. Models of this type may be relevant for modelling control strategies for Drosophila suzukii, a recently introduced fruit fly that caused severe production losses, based on native parasitoids of indigenous fruit flies. In the third part, we present a starting point to analyse raw data collected by Stacconi et al. in the province of Trento, Italy. We present an extensions of the model presented in Part 2 where we have two hosts and two parasitoids. Since its analysis is complicated, we begin with a simpler one host-one parasitoid model to better understand the possible impact of parasitoids on a host population. We start by considering that the host population is at an equilibrium without parasitoids, which are then introduced as different percentages of initial adult hosts. We compare the times needed by parasitoids to halve host pupae and we found that the best percentage choice is 10%. Thus we decide to fix this percentage of parasitoid introduction and analyse what happens if parasitoids are introduced when the host population is not at equilibrium both by introducing always the same percentage or the same amount of parasitoids. In this case, even if the attack rate is at 1/10 of its maximum value, parasitoids would have a strong effect on host population, shifting it to an oscillatory regime. However we found that this effect would require more than 100 days but we also found that it can faster if parasitoids are introduced before the host population has reached the equilibrium without parasitoids. Thus there could be possible releases when host population is low. Last we investigate also what happens if in nature mortality rates of these species increase and we found that there is not such a big difference respect to the results obtained using laboratory data.
184

Mathematical models for vector-borne disease: effects of periodic environmental variations.

Moschini, Pamela Mariangela January 2015 (has links)
Firstly, I proposed a very simple SIS/SIR model for a general vector-borne disease transmission considering constant population sizes over the season, where contact between the host and the vector responsible of the transmission is assumed to occur only during the summer of each year. I discussed two different types of threshold for pathogen persistence that I explicitly computed: a "short-term threshold" and a "long-term threshold". Later, I took into account the seasonality of the populations involved in the transmission. For a single season, the model consists of system of non linear differential equations considering the various stages of the infection transmission between the vector and the host population. Assuming the overwintering in the mosquito populations, I simulated the model for several years. Finally, I studied the spatial spread of a vector-borne disease throught an impusive reaction-diffusion model and I showed some simulations.
185

On Boolean functions, symmetric cryptography and algebraic coding theory

Calderini, Marco January 2015 (has links)
In the first part of this thesis we report results about some “linear” trapdoors that can be embedded in a block cipher. In particular we are interested in any block cipher which has invertible S-boxes and that acts as a permutation on the message space, once the key is chosen. The message space is a vector space and we can endow it with alternative operations (hidden sums) for which the structure of vector space is preserved. Each of this operation is related to a different copy of the affine group. So, our block cipher could be affine with respect to one of these hidden sums. We show conditions on the S-box able to prevent a type of trapdoors based on hidden sums, in particular we introduce the notion of Anti-Crooked function. Moreover we shows some properties of the translation groups related to these hidden sums, characterizing those that are generated by affine permutations. In that case we prove that hidden sum trapdoors are practical and we can perform a global reconstruction attack. We also analyze the role of the mixing layer obtaining results suggesting the possibility to have undetectable hidden sum trapdoors using MDS mixing layers. In the second part we take into account the index coding with side information (ICSI) problem. Firstly we investigate the optimal length of a linear index code, that is equal to the min-rank of the hypergraph related to the instance of the ICSI problem. In particular we extend the the so-called Sandwich Property from graphs to hypergraphs and also we give an upper bound on the min-rank of an hypergraph taking advantage of incidence structures such as 2-designs and projective planes. Then we consider the more general case when the side information are coded, the index coding with coded side information (ICCSI) problem. We extend some results on the error correction index codes to the ICCSI problem case and a syndrome decoding algorithm is also given.
186

Mathematical modelling of emerging and re-emerging infectious diseases in human and animal populations

Dorigatti, Ilaria January 2011 (has links)
The works presented in this thesis are very different one from the other but they all deal with the mathematical modelling of emerging infectious diseases which, beyond being the leitmotiv of this thesis, is an important research area in the field of epidemiology and public health. A minor but significant part of the thesis has a theoretical flavour. This part is dedicated to the mathematical analysis of the competition model between two HIV subtypes in presence of vaccination and cross-immunity proposed by Porco and Blower (1998). We find the sharp conditions under which vaccination leads to the coexistence of the strains and using arguments from bifurcation theory, draw conclusions on the equilibria stability and find that a rather unusual behaviour of histeresis-type might emerge after repeated variations of the vaccination rate within a certain range. The most of this thesis has been inspired by real outbreaks occurred in Italy over the last 10 years and is about the modelling of the 1999-2000 H7N1 avian influenza outbreak and of the 2009-2010 H1N1 pandemic influenza. From an applied perspective, parameter estimation is a key part of the modelling process and in this thesis statistical inference has been performed within both a classical framework (i.e. by maximum likelihood and least square methods) and a Bayesian setting (i.e. by Markov Chain Monte Carlo techniques). However, my contribution goes beyond the application of inferential techniques to specific case studies. The stochastic, spatially explicit, between-farm transmission model developed for the transmission of the H7N1 virus has indeed been used to simulate different control strategies and asses their relative effectiveness. The modelling framework presented here for the H1N1 pandemic in Italy constitutes a novel approach that can be applied to a variety of different infections detected by surveillance system in many countries. We have coupled a deterministic compartmental model with a statistical description of the reporting process and have taken into account for the presence of stochasticity in the surveillance system. We thus tackled some statistical challenging issues (such as the estimation of the fraction of H1N1 cases reporting influenza-like-illness symptoms) that had not been addressed before. Last, we apply different estimation methods usually adopted in epidemiology to real and simulated school outbreaks, in the attempt to explore the suitability of a specific individual-based model at reproducing empirically observed epidemics in specific social contexts.
187

The influence of the population contact network on the dynamics of epidemics transmission

Ottaviano, Stefania January 2016 (has links)
In this thesis we analyze the relationship between epidemiology and network theory, starting from the observation that the viral propagation between interacting agents is determined by intrinsic characteristics of the population contact network. We aim to investigate how a particular network structure can impact on the long-term behavior of epidemics. This field is way too large to be fully discussed; we limit ourselves to consider networks that are partitioned into local communities, in order to incorporate realistic contact structures into the model. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect those belonging to the same community with higher probability than individuals in other communities. We describe the epidemic process as a continuous-time individual-based susceptible–infected–susceptible (SIS) model using a first-order mean-field approximation, both in homogeneous and in heterogeneous setting. For this mean-field model we show that the spectral radius of the smaller quotient graph, in connection with the infecting and curing rates, is related to the epidemic threshold, and it gives conditions in order to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable equilibrium. Moreover we show that above the threshold another steady-state exists that can be computed using a lower-dimensional dynamical system associated with the evolution of the process on the quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition and of its recent and rather flexible generalization, that of almost equitable partition. We also consider the important issue related to the control of the infectious disease. Taking into account the connectivity of the network, we provide a cost-optimal distribution of resources to prevent the disease from persisting indefinitely in the population; for a particular case of two-level immunization problem we report on the construction of a polynomial time complexity algorithm. In the second part of the thesis we include stochasticity in the model, considering the infection rates in the form of independent stochastic processes. This allows us to get stochastic differential equation for the probability of infection in each node. We report on the existence of the solution for all times. Moreover we show that there exist two regions, given in terms of the coefficients of the model, one where the system goes to extinction almost surely, and the other where it is stochastic permanent.
188

Development of innovative tools for multi-objective optimization of energy systems

Mahbub, Md Shahriar January 2017 (has links)
From industrial revolution to the present day, fossil fuels are the main sources for ensuring energy supply. Fossil fuel usages have negative effects on environment that are highlighted by several local or international policy initiatives at support of the big energy transition. The effects urge energy planners to integrate renewable energies into the corresponding energy systems. However, large-scale incorporation of renewable energies into the systems is difficult because of intermittent behaviors, limited availability and economic barriers. It requires intricate balancing among different energy producing resources and the syringes among all the major energy sectors. Although it is possible to evaluate a given energy scenario (complete set of parameters describing a system) by using a simulation model, however, identifying optimal energy scenarios with respect to multiple objectives is a very difficult to accomplished. In addition, no generalized optimization framework is available that can handle all major sectors of an energy system. In this regards, we propose a complete generalized framework for identifying scenarios with respect to multiple objectives. The framework is developed by coupling a multi-objective evolutionary algorithm and EnergyPLAN. The results show that the tool has the capability to handle multiple energy sectors together; moreover, a number of optimized trade-off scenarios are identified. Furthermore, several improvements are proposed to the framework for finding better-optimized scenarios in a computationally efficient way. The framework is applied on two different real-world energy system optimization problems. The results show that the framework is capable to identify optimized scenarios both by considering recent demands and by considering projected demands. The proposed framework and the corresponding improvements make it possible to provide a complete tool for policy makers for designing optimized energy scenarios. The tool can be able to handle all major energy sectors and can be applied in short and long-term energy planning.
189

Computational inverse scattering via qualitative methods

Aramini, Riccardo January 2011 (has links)
This Ph.D. thesis presents a threefold revisitation and reformulation of the linear sampling method (LSM) for the qualitative solution of inverse scattering problems (in the resonance region and in time-harmonic regime): 1) from the viewpoint of its implementation (in a 3D setting), the LSM is recast in appropriate Hilbert spaces, whereby the set of algebraic systems arising from an angular discretization of the far-field equation (written for each sampling point of the numerical grid covering the investigation domain and for each sampling polarization) is replaced by a single functional equation. As a consequence, this 'no-sampling' LSM requires a single regularization procedure, thus resulting in an extremely fast algorithm: complex 3D objects are visualized in around one minute without loss of quality if compared to the traditional implementation; 2) from the viewpoint of its application (in a 2D setting), the LSM is coupled with the reciprocity gap functional in such a way that the influence of scatterers outside the array of receiving antennas is excluded and an inhomogeneous background inside them can be allowed for: then, the resulting 'no-sampling' algorithm proves able to detect tumoural masses inside numerical (but rather realistic) phantoms of the female breast by inverting the data of an appropriate microwave scattering experiment; 3) from the viewpoint of its theoretical foundation, the LSM is physically interpreted as a consequence of the principle of energy conservation (in a lossless background). More precisely, it is shown that the far-field equation at the basis of the LSM (which does not follow from physical laws) can be regarded as a constraint on the power flux of the scattered wave in the far-field region: if the flow lines of the Poynting vector carrying this flux verify some regularity properties (as suggested by numerical simulations), the information contained in the far-field constraint is back-propagated to each point of the background up to the near-field region, and the (approximate) fulfilment of such constraint forces the L^2-norm of any (approximate) solution of the far-field equation to behave as a good indicator function for the unknown scatterer, i.e., to be 'small' inside the scatterer itself and 'large' outside.
190

Binary quadratic forms, elliptic curves and Schoof's algorithm

Pintore, Federico January 2015 (has links)
In this thesis, I show that the representation of prime integers by reduced binary quadratic forms of given discriminant can be obtained in polynomial complexity using Schoof's algorithm for counting the number of points of elliptic curves over finite fields. It is a remarkable fact that, although an algorithm of Gauss' solved the representation problem long time ago, a solution in polynomial complexity is very recent and almost unnoticed in the literature. Further, I present a viable alternative to Gauss' algorithm, which constitutes the main original contribution of my thesis. This alternative way of computing in polynomial time an explicit solution of the representation problem is particularly suitable whenever the number of not equivalent reduced forms is small. Lastly, I report that, in the efforts of improving Schoof's algorithm, a marginal incompleteness in its original formulation was identified. This weakness was eliminated by a slight modification of the algorithm suggested by Schoof himself.

Page generated in 0.0656 seconds