281 |
Constrained Calculus of Variations and Geometric Optimal Control TheoryLuria, Gianvittorio January 2010 (has links)
The present work provides a geometric approach to the calculus of variations in the presence of non-holonomic constraints. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The usual classification of the evolutions into normal and abnormal ones is also discussed, showing the existence of a universal algorithm assigning to every admissible curve a corresponding abnormality index, defined in terms of a suitable linear map. A gauge-invariant formulation of the variational problem, based on the introduction of the bundle of affine scalars over the configuration manifold, is then presented. The analysis includes a revisitation of Pontryagin Maximum Principle and of the Erdmann-Weierstrass corner conditions, a local interpretation of Pontryagin's equations as dynamical equations for a free (singular) Hamiltonian system and a generalization of the classical criteria of Legendre and Bliss for the characterization of the minima of the action functional to the case of piecewise-differentiable extremals with asynchronous variation of the corners.
|
282 |
Topics in the geometry of non Riemannian lie groupsNicolussi Golo, Sebastiano January 2017 (has links)
This dissertation consists of an introduction and four papers. The papers deal with several problems of non-Riemannian metric spaces, such as sub-Riemannian Carnot groups and homogeneous metric spaces. The research has been carried out between the University of Trento (Italy) and the University of Jyväskylä (Finland) under the supervision of prof. F. Serra Cassano and E. Le Donne, respectively. In the following we present the abstracts of the four papers.
1) REGULARITY PROPERTIES OF SPHERES IN HOMOGENEOUS GROUPS
E. Le Donne AND S. Nicolussi Golo
We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an algebraic criterium in terms of the dilating automorphisms, which for example makes us conclude the regularity of every homogeneous distance on the Heisenberg group. In such a group, we analyze in more details the geometry of metric spheres. We also provide examples of homogeneous groups where spheres present cusps.
2) ASYMPTOTIC BEHAVIOR OF THE RIEMANNIAN HEISENBERG GROUP AND ITS HOROBOUNDARY
E. Le Donne, S. Nicolussi Golo, AND A. Sambusetti
The paper is devoted to the large scale geometry of the Heisenberg group H equipped with left-invariant Riemannian metrics. We prove that two such metrics have bounded difference if and only if they are asymptotic, i.e., their ratio goes to one, at infinity. Moreover, we show that for every left-invariant Riemannian metric d on H there is a unique sub-Riemanniann metric d' for which d − d' goes to zero at infinity, and we estimate the rate of convergence. As a first immediate consequence we get that the Riemannian Heisenberg group is at bounded distance from its asymptotic cone. The second consequence, which was our aim, is the explicit description of the horoboundary of the Riemannian Heisenberg group.
3) FROM HOMOGENEOUS METRIC SPACES TO LIE GROUPS
M. G. Cowling, V. Kivioja, E. Le Donne, S. Nicolussi Golo, AND A. Ottazzi
We study connected, locally compact metric spaces with transitive isometry groups. For all $\epsilon\in R_+$, each such space is $(1,\epsilon)$- quasi-isometric to a Lie group equipped with a left-invariant metric. Further, every metric Lie group is $(1,C)$-quasi-isometric to a solvable Lie group, and every simply connected metric Lie group is $(1,C)$-quasi-isometrically homeomorphic to a solvable-by-compact metric Lie group. While any contractible Lie group may be made isometric to a solvable group, only those that are solvable and of type (R) may be made isometric to a nilpotent Lie group, in which case the nilpotent group is the nilshadow of the group. Finally, we give a complete metric characterisation of metric Lie groups for which there exists an automorphic dilation. These coincide with the metric spaces that are locally compact, connected, homogeneous, and admit a metric dilation.
4) SOME REMARKS ON CONTACT VARIATIONS IN THE FIRST HEISENBERG GROUP
S. Nicolussi Golo
We show that in the first sub-Riemannian Heisenberg group there are intrinsic graphs of smooth functions that are both critical and stable points of the sub-Riemannian perimeter under compactly supported variations of contact diffeomorphisms, despite the fact that they are not area-minimizing surfaces. In particular, we show that if $f : R^2 \rightarrow R^2$ is a $C^1$-intrinsic function, and $\nabla^f\nabla^ff = 0$, then the first contact variation of the sub-Riemannian area of its intrinsic graph is zero and the second contact variation is positive.
|
283 |
Existence, Uniqueness, Optimization and Stability for low Eigenvalues of some Nonlinear OperatorsFranzina, Giovanni January 2012 (has links)
The thesis surveys some recent results obtained in the field of nonlinear partial differential equations and calculus of variations about eigenvalues of nonlinear operators.
|
284 |
Geometric Hamiltonian Formulation of Quantum MechanicsPastorello, Davide January 2014 (has links)
My PhD thesis is focused on geometric Hamiltonian formulation of Quanum Mechanics and its interplay with standard formulation. The main result is the construction of a general prescription to set up a quantum theory as a classical-like theory where quantum dynamics is given by a Hamiltonian vector field on a complex projective space with Kähler structure. In such geometric framework quantum states are represented by classical-like Liouville densities. After a complete characterization of classical-like observables in a finite-dimensional quantum theory, the observable C*-algebra is described in geometric Hamiltonian terms. In the final part of the work, the classical-like Hamiltonian formulation is applied to the study of composite quantum systems providing a notion of entanglement measure.
|
285 |
Choice, extension, conservation. From transfinite to finite proof methods in abstract algebraWessel, Daniel January 2018 (has links)
Maximality principles such as the ones going back to Kuratowski and Zorn ensure the existence of higher type ideal objects the use of which is commonly held indispensable for mathematical practice. The modern turn towards computational methods, which can be witnessed to have a strong influence on contemporary foundational studies, encourages a reassessment within a constructive framework of the methodological intricacies that go along with invocations of maximality principles. The common thread that can be followed through the chapters of this thesis is explained by the attempt to put the widespread use of ideal objects under constructive scrutiny. It thus walks the tracks of a revised Hilbert’s programme which has inspired a reapproach to constructive algebra by finitary means, and for which Scott’s entailment relations have already shown to provide a vital and utmost versatile tool. In this thesis several forms of the Kuratowski-Zorn Lemma are introduced and proved equivalent over constructive set theory; the notion of Jacobson radical is brought from commutative rings to a general ideal theory for single-conclusion entailment relations; a flexible conservation criterion of Scott for multi-conclusion entailment relations is put into action; elementary and constructive variants for algebraic extension theorems such as Sikorski’s on the injectivity of complete atomic Boolean algebras are phrased and proved in terms of entailment relations; and a point-free version of Sikora’s theorem on spaces of orderings of groups is obtained by a revisitation with syntactical means of some of the classical criteria for groups to be orderable.
|
286 |
Fractional diffusion: biological models and nonlinear problems driven by the s-power of the Laplacian.Marinelli, Alessio January 2016 (has links)
In the classical theory, the fractional diffusion is ruled by two different types of fractional Laplacians. Formerly known since 60s, the spectral fractional Laplacian had an important development in the recent mathematical study with the initial contributes of L. Caffarelli, L. Silvestre and X. Cabré, X.Tan. The integral version of the fractional Laplacian, recently discussed by M. Fukushima, Y. Oshima, M Takeda, and Song, Vondracek, is considered in a semilinear elliptic problem in presence of a general logistic function and an indefinite weight. In particular we look for a multiplicity result for the associated Dirichlet problem. In the second part, starting from the classical works of T.Hillen and G. Othmer and taking the Generalized velocity jump processes presented in a recent work of J.T.King, we obtain the fractional diffusion as limit of this last processes using the technique used in another recent work of Mellet, without the classical Hilbert or Cattaneo approximation's methods.
|
287 |
Extended-order algebras and some applicationsDella Stella, Maria Emilia January 2013 (has links)
In this PhD thesis we study the extended-order algebras and their properties; moreover, we evaluate the possibility to apply them in other mathematical contexts, as, for instance, the fuzzy implicators and the many-valued relations.
|
288 |
Mathematical modeling of amoeba-bacteria population dynamicsFumanelli, Laura January 2009 (has links)
We present a mathematical model describing the dynamics occurring between two interacting populations, one of amoebae and one of virulent bacteria; it is meant to describe laboratory experiments with these two species in a mathematical framework and help understanding the role of the different mechanisms involved. In particular we aim to focus on how bacterial virulence may affect the dynamics of the system.
The model is a modified reaction-diffusion-chemotaxis predator-prey one with a mechanism of redistribution of ingested biomass between amoeboid cells. The spatially homogeneous case is analyzed in detail; conditions for pattern formation are established; numerical simulations for the complete model are performed.
|
289 |
Time-optimal control problems in the space of measuresCavagnari, Giulia January 2016 (has links)
The thesis deals with the study of a natural extension of classical finite-dimensional time-optimal control problem to the space of positive Borel measures. This approach has two main motivations: to model real-life situations in which the knowledge of the initial state is only probabilistic, and to model the statistical distribution of a huge number of agents for applications in multi-agent systems. We deal with a deterministic dynamics and treat the problem first in a mass-preserving setting: we give a definition of generalized target, its properties, admissible trajectories and generalized minimum time function, we prove a Dynamic Programming Principle, attainability results, regularity results and an Hamilton-Jacobi-Bellman equation solved in a suitable viscosity sense by the generalized minimum time function, and finally we study the definition of an object intended to reflect the classical Lie bracket but in a measure-theoretic setting. We also treat a case with mass loss thought for modelling the situation in which we are interested in the study of an averaged cost functional and a strongly invariant target set. Also more general cost functionals are analysed which takes into account microscopical and macroscopical effects, and we prove sufficient conditions ensuring their lower semicontinuity and a dynamic programming principle in a general formulation.
|
290 |
Social dynamics and behavioral response during health threatsBosetti, Paolo January 2019 (has links)
The interplay between human behavior and the spreading of an epidemics represents a challenge in modeling the dynamics of infectious diseases. The technological revolution that we are experiencing nowadays gives access to new sources of digital data, capable of capturing behavioral patterns and social dynamics of our society and opening, in fact, the path to new opportunities for mathematical modelers. Provided by such tools, we discuss two different aspects of the dynamics of infectious diseases associated with human behavior. In the first part of the thesis, we focus on the mechanism driving the awareness of individuals during public health emergencies and describe epidemiological models especially tailored to better understand the underline features of the risk perception. The proposed framework is able to disentangle and characterize the contribution of media drivers and social contagion mechanisms in the building of awareness of individuals about infectious diseases. In the second part of the thesis, we present a data driven computational model aiming to assess the potential risk of experiencing measles re-emergence in Turkey. This study takes into consideration the recent massive migration of Syrian refugees in Turkey, which changed the social structure and focuses on the possible outbreak of an infectious disease, such as measles, as a consequence of the great concentration of Syrian refugees not adequately immunized against it. The model proposed is informed with mobility patterns inferred from mobile phone data and accounts for the different hypothetical policies adopted to integrate the refugees with the Turkish population.
|
Page generated in 0.1006 seconds