31 |
Phthalocyanine interfaces : the monolayer regionPalmgren, Pål January 2007 (has links)
Organic molecules adsorbed on inorganic substrates are the topics of interest in this thesis. Interfaces of this kind are found in dye sensitized solar cells that convert solar energy to electricity, a promising environmentally friendly energy source which might provide a route to replace fossil fuels. Another field where these interfaces play a role is in molecular electronics, an approach to solve the down scaling in the ever increasing hunt for miniaturized electronic devices. The motivation for this work lies among other in these applications and surface science is a suitable approach to investigate the electronic and morphologic properties of the interfaces as it provides detailed knowledge on an atomic level. Phthalocyanines are the organic molecules investigated and the inorganic substrates range from wide band gap via narrow band gap semiconductors to metals. Photoelectron and X-ray spectroscopy experiments are performed to shed light on the electronic properties of the adsorbed molecules and the substrate, as well as the chemical interaction between adsorbate and substrate at the interface. The ordering of the adsorbate at the interface is important as ordered molecular thin films may have other properties than amorphous films due to the anisotropic electronic properties of the organic molecules; this is investigated using scanning tunneling microscopy. We find that the phthalocyanines are affected by adsorption when the substrate is TiO2 or Ag, where charge transfer from the molecule occurs or an interface state is formed respectively. The molecules are adsorbed flat on these surfaces giving a large contact area and a relatively strong bond. On Ag, ordered structures appear with different symmetry depending on initial coverage. The reactivity of the TiO2 surface is not ideal in the solar cell application and by modifying the surface with a thin organic layer, the negative influence on the adsorbed phthalocyanine is reduced. ZnO is not as reactive as TiO2, thanks maybe to the upright adsorption mode of the phthalocyanines. The semiconductor InSb is less reactive leading to self-assembled molecular structures on the (001) surface, either homogenously distributed in a one monolayer thick film or in strands along the reconstruction rows. InAs on the other hand has a larger influence on the adsorbed molecules resulting in a metallic film upon thermal treatment. / QC 20100812
|
32 |
Growth and XRD Characterization of Quasicrystals in AlCuFe and Nanoflex Thin FilmsOlsson, Simon January 2008 (has links)
Quasicrystals is a new kind of material that have several interesting aspects to it. The unusual atomic structure entails many anomalous and unique physical properties, for example, high hardness, and extremely low electrical and thermal conductivity. In thin films quasicrystals would enable new functional materials with a combination of attractive properties.In this work, AlCuFe and Nanoflex steel, materials that are known to form quasicrystals in bulk, have been deposited as thin films on Si and Al2O3 substrates using DC magnetron sputtering. These thin films were heat treated, and the formation and growth of different phases, among other approximant and quasicrystalline phases, were studied using mainly in-situ X-ray diffraction.During the project several problems with the formation of quasicrystals were encountered, and it is proposed how to overcome these problems, or even how to make use of them. Finally, the quasicrystalline phase was realized, although it was not completely pure. In the end some suggestions for future work is presented.
|
33 |
Growth and characterization of Ge quantum dots on SiGe-based multilayer structures / Tillväxt och karaktärisering av Ge kvantprickar på SiGe-baserade multilager strukturerFrisk, Andreas January 2009 (has links)
Thermistor material can be used to fabricate un-cooled IR detectors their figure of merit is the Temperature Coefficient of Resistance (TCR). Ge dots in Si can act as a thermistor material and they have a theoretical TCR higher than for SiGe layers but they suffer from intermixing of Si into the Ge dots. Ge dots were grown on unstrained or strained Si layers and relaxed or strained SiGe layers at temperatures of 550 and 600°C by reduced pressure chemical vapor deposition (RPCVD). Both single and multilayer structures where grown and characterized. To achieve a strong signal in a thermal detector a uniform shape and size distribution of the dots is desired. In this thesis work, an endeavor has been to grow uniform Ge dots with small standard deviation of their size. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to characterize the size and shape distribution of Ge dots. Ge contents measured with Raman spectroscopy are higher at lower growth temperatures. Simulation of TCR for the most uniform sample grown at 600°C give 4.43%/K compared to 3.85%/K for samples grown at 650°C in a previous thesis work. Strained surfaces increases dot sizes and make dots align in crosshatched pattern resulting in smaller density, this effect increases with increasing strain. Strain from buried layers of Ge dots in a multilayer structure make dots align vertically. This alignment of Ge dots was very sensitive to the thickness of the Si barrier layer. The diameter of dots increase for each period in a multilayer structure. When dots are capped by a Si layer at the temperature of 600°C intermixing of Si into the Ge dot occurs and the dot height decrease.
|
34 |
Growth and XRD Characterization of Quasicrystals in AlCuFe and Nanoflex Thin FilmsOlsson, Simon January 2008 (has links)
<p>Quasicrystals is a new kind of material that have several interesting aspects to it. The unusual atomic structure entails many anomalous and unique physical properties, for example, high hardness, and extremely low electrical and thermal conductivity. In thin films quasicrystals would enable new functional materials with a combination of attractive properties.In this work, AlCuFe and Nanoflex steel, materials that are known to form quasicrystals in bulk, have been deposited as thin films on Si and Al2O3 substrates using DC magnetron sputtering. These thin films were heat treated, and the formation and growth of different phases, among other approximant and quasicrystalline phases, were studied using mainly in-situ X-ray diffraction.During the project several problems with the formation of quasicrystals were encountered, and it is proposed how to overcome these problems, or even how to make use of them. Finally, the quasicrystalline phase was realized, although it was not completely pure. In the end some suggestions for future work is presented.</p>
|
35 |
Fullerene-like CNx and CPx Thin Films; Synthesis, Modeling, and ApplicationsFurlan, Andrej January 2009 (has links)
This Thesis concerns the development of fullerene-like (FL) carbon nitride (CNx) thin films and the discovery of phosphorus-carbide (CPx) compounds. The work dedicated to CPx include first-principles theoretical simulations of the growth and properties of FL-CPx structures. I have employed DC magnetron sputtering methods to synthesize both CNx and CPx thin films. The deposition conditions for CPx films were chosen on the basis of the theoretical results as well as from the experience from the deposition of FL-CNx thin films. The characterization of the CPx films is divided into three main directions: structural characterization by transmission electron microscopyand scanning electron microscopy, analysis of the amount of elements and chemical bonds presentin the structure by X-ray photoelectron spectroscopy and Auger spectroscopy, and mechanicalproperty analysis by nanoindentation. The CPx films exhibit a short range orderedstructure with FL characteristics for substrate temperature of 300 °C and for a phosphorus content of 10-15 at.%, which isconsistent with the theoretical findings. These films also displayed the best mechanical properties in terms of hardness and resiliency, which are better than those of the corresponding FL-CNx films. For the FL-CNx thin film material, I find that the surface water adsorption is lower compared to commercial computer hard disk top coatings. Following that line the dangling bonds in FL-CNx coatings have been investigated by electron spin resonance (ESR). The absence of ESR signal for FL-CNx indicates very low density of dangling bonds in the material, which explains the low water adsorption tendency. The potential for using highly elastic FL-CNx coatings in an automotive valve-train environment has also been investigated. CNx coatings of different nitrogen content were investigated using microscopy, wear testing, nanoindentation testing, and in an experimental cam-tappet testing rig. The FL-CNx coating with the higher value of hardness/elastic modulus showed greater durability in cam-tappet wear testing.
|
36 |
Growth and Characterization of Ti-Si-N Hard CoatingsFlink, Axel January 2006 (has links)
Metastable (Ti,Si)N alloy and TiN/SiNx multilayer thin solid films as well as SiNx/TiN surfaces have been explored. Cubic Ti1-xSixN (0≤x≤0.14) films deposited onto cemented carbide (WC-Co) substrates by arc evaporation exhibited a competitive columnar growth mode where the structure transforms to a feather-like nanostructure with increasing Si content as revealed by x-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy revealed the presence of Ti-N and Si-N bonding, but no amorphous Si3N4. Band structure calculations showed that phase separation of NaClstructure Ti1-xSixN solid solution into cubic SiN and TiN phases is energetically favorable. The metastable microstructure, however, was maintained for the Ti0.86Si0.14N film annealed at 900°C, while recrystallization in the cubic state took place at 1100°C annealing during 2h. The Si content influenced the film hardness close to linearly, by combination of solid-solution hardening in the cubic state and defect hardening. For x=0 and x=0.14, nanoindentation gave a hardness of 29.9±3.4 GPa and 44.7±1.9 GPa, respectively. The hardness was retained during annealing at 900°C. Nanostructured materials, e.g., nanocomposites and nanolaminates, are defined by internal interfaces, of which the nature is still under debate. In this work two-phase model systems were explored by depositing SiNx/TiN nanolaminate films, including superlattices containing cubic SiNx, by dual target reactive magnetron sputtering. It is demonstrated that the interfacial phase of SiNx onto TiN(001) and TiN(111) can be crystalline, and even epitaxial with complex surface reconstructions. Using in situ structural analyses combined with ab initio calculations, it is found that SiNx layers grow epitaxially, giving rise to strong interfacial bonding, on both TiN(001) and TiN(111) surfaces. In addition, TiN overlayers grow epitaxially on SiNx/TiN(001) bilayers in nanolaminate structures. These results provide insight into the development of design rules for novel nanostructured materials. / Report code: LiU-TEK-LIC-2006:51.
|
37 |
Local release of lithium from sol-gel coated orthopaedic screws : an <em>in</em><em> vitro</em> and<em> in vivo</em> studyAltgärde, Noomi January 2009 (has links)
<p> </p><p>In orthopaedic practice, fractures are usually stabilised with metal screws or rods. This is done in order to keep the fracture parts in place during the rather slow healing process. The healing time can potentially be reduced by local- or systemic treatment with different bone promoting drugs. In later years, lithium, otherwise used to treat bipolar disease, has shown promise to be such a drug.</p><p> </p><p>The aim of this master thesis was to find a way to coat metal bone screws with lithium and to characterise the coating. The coating was to be designed in such a way that it could release lithium to the surrounding bone tissue.</p><p> </p><p>Lithium chloride was incorporated into a titanate sol-gel and attached to silicon wafers and stainless steel screws by dip coating. Wafers were used for initial <em>in vitro</em> studies of how lithium changed coating characteristics. This was studied using ellipsometry, AFM and SEM. Lithium is most probably physisorbed and not incorporated into the network building up the sol-gel. Coating structure is changed as more lithium is incorporated. For large amounts of lithium, the nanoparticles normally formed when curing the sol-gel are inhibited. One effect of this is reduced bioactivity, seen as a reduced ability for calcium phosphate crystals to nucleate on the coating when immersed in simulated body fluid.</p><p>Lithium release was investigated using AAS. Lithium is released from the coating, showing a burst effect. By changing the number of coating layers used, the release profile can be partly altered. The coating was also applied to screws, showing good attachment, and the lithium release profile was similar to the one seen from wafers.</p><p>Finally, a screw model was used in rats to assess the effect of local lithium treatment from screws and systemic lithium treatment on fracture healing. In the model, a screw was inserted in tibia, mimicking a fracture. When the bone around the screw was healed, a pullout test was performed, giving information about the strength of the bone surrounding the screw. No significant difference could be found for either local- or systemic lithium treatment compared to control. However, when evaluating the strength of intact bone in a similar way, a positive effect of systemic lithium treatment could be seen. Therefore, it is still likely that lithium has a positive effect on bone and further studies are needed to fully evaluate its role in fracture healing.</p><p> </p> / <p><p>Vid behandling av benbrott stabiliseras vanligtvis frakturen internt med metallskruvar och</p><p>metallstavar. Detta görs för att hålla brottbitarna på plats under den relativt långsamma läkprocessen. Det är möjligt att minska tiden för frakturläkning genom att lokalt eller systemiskt behandla med olika läkemedel som främjar bentillväxt. På senare år har det presenterats bevis för att litium, som annars används som psykofarmaka, fungerar som ett sådant läkemedel.</p><p> </p><p>Syftet med detta examensarbete var att hitta en metod för att fästa litium på benimplantat. Litium skulle fästas på ett sådant sätt att frisläppning till omgivande vävnad blev möjlig.</p><p> </p><p>Litiumklorid inkorporerades i en titanat-solgel och lager av detta lades på kiselytor och rostfria skruvar genom s.k. ”dip-coating”. Kiselytorna användes för initiala <em>in vitro</em>-studier av hur litium ändrade beläggningens egenskaper. Litium sitter antagligen fast på ytan av det tredimensionella nätverk som utgör solgelen, istället för att sitta inbundet i nätverket. Lagerstrukturen ändras ju mer litium som inkorporeras och vid stora mängder skapas inte de nanopartiklar som vanligtvis finns i en solgel-baserad beläggning. En följd av detta är reducerad bioaktivitet för beläggningen, dvs. en minskad förmåga för kalciumfosfatkristaller att bildas på ytan. Litium frisläpps från beläggningen, dock sker denna frisläppning snabbt. Genom att belägga ytan med flera lager av solgel kan frisläppningskinetiken delvis ändras. Solgelen kunde också med god vidhäftning appliceras på skruvar och frisläppningskinetiken från en skruv är liknande den från en kiselyta.</p>Slutligen användes en skruvmodell i råtta för att undersöka vilken effekt lokal respektive systemisk litiumbehandling har på frakturläkning. I modellen efterliknas ett benbrott genom att en skruv sätts in i skenbenet. När benvävnaden runt skruven har läkt görs ett utdragstest på skruven vilket ger information om benets styrka. Ingen signifikant skillnad i skruvens utdragskraft kunde ses mellan de båda försöksgrupperna och kontrollgruppen. Däremot hade gruppen som fick systemisk litiumbehandling fått starkare ben totalt, vilket indikerar att litium har effekt på <em>intakt</em> ben. På grund av dessa resultat finns det fortfarande skäl att tro att litium har en positiv påverkan på ben, varför dess effekt på frakturläkning bör undersökas ytterligare. </p>
|
38 |
Behavior of cutting tool coating material Ti<sub>1-x</sub>Al<sub>x</sub>N at high pressure and high temperature / Faser i Ti<sub>1-x</sub>Al<sub>x</sub>N-ytbeläggningar vid högt tryck och hög temperaturDilner, David January 2009 (has links)
<p>The high pressure and high temperature (HPHT) behavior of Ti<sub>1-x</sub>Al<sub>x</sub>N coatings on cutting tool inserts have been of interest for this diploma work. A literature study of HPHT techniques as well as measurement methods has been done. A diamond anvil cell (DAC) would be a good device to achieve high pressure and high temperature conditions on small samples. Another way to obtain these conditions would be a cutting test, which has been performed on a Ti<sub>1-x</sub>Al<sub>x</sub>N coated cutting tool insert with x = 0.67. Also a cubic press could be used to apply HPHT on a Ti<sub>1-x</sub>Al<sub>x</sub>N sample or a large volume press on a whole cutting tool insert. To measure hardness on thin coatings a nanoindentor could be used, which have been done on heat-treated Ti<sub>0.33</sub>Al<sub>0.67</sub>N and TiN samples. X-ray diffraction (XRD) is a suitable method to measure phase composition of a sample and was performed on the cutting tested insert as well as on an untreated reference insert. Three ways to continue this project have been outlined all starting with more comprehensive cutting tests.</p>
|
39 |
A NO<sub>x</sub> sensor for high-temperature applications based on SiCMidbjer, Johan January 2010 (has links)
<p>A new NO<sub>x</sub> sensor for high-temperature applications has been developed and thouroghly characterised. The sensor layers are a mixed oxide of CoO, MgO and MgO<sub>2</sub> deposited by thermal evaporation with a porous platinum gate on top, deposited by thermal evaporation or sputtering. The sensitivity and selectivity of the sensor is promising and is shown to depend upon the ratio between Co and Mg in the film and a number of competing mechanisms are shown to take place on the sensor surface. Response and recovery of the device is still slow and there are some drift, which are suggested to be due to a restructuring sensor surface during operation that was found by SEM-studies. Finally,the oxide surface has been characterized by XPS and a novel process for deposition of the sensor layers by lift-off technique has been developed.</p>
|
40 |
Growth and Characterization of Ti-Si-N Hard CoatingsFlink, Axel January 2006 (has links)
<p>Metastable (Ti,Si)N alloy and TiN/SiNx multilayer thin solid films as well as SiNx/TiN surfaces have been explored. Cubic Ti1-xSixN (0≤x≤0.14) films deposited onto cemented carbide (WC-Co) substrates by arc evaporation exhibited a competitive columnar growth mode where the structure transforms to a feather-like nanostructure with increasing Si content as revealed by x-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy revealed the presence of Ti-N and Si-N bonding, but no amorphous Si3N4. Band structure calculations showed that phase separation of NaClstructure Ti1-xSixN solid solution into cubic SiN and TiN phases is energetically favorable. The metastable microstructure, however, was maintained for the Ti0.86Si0.14N film annealed at 900°C, while recrystallization in the cubic state took place at 1100°C annealing during 2h. The Si content influenced the film hardness close to linearly, by combination of solid-solution hardening in the cubic state and defect hardening. For x=0 and x=0.14, nanoindentation gave a hardness of 29.9±3.4 GPa and 44.7±1.9 GPa, respectively. The hardness was retained during annealing at 900°C.</p><p>Nanostructured materials, e.g., nanocomposites and nanolaminates, are defined by internal interfaces, of which the nature is still under debate. In this work two-phase model systems were explored by depositing SiNx/TiN nanolaminate films, including superlattices containing cubic SiNx, by dual target reactive magnetron sputtering. It is demonstrated that the interfacial phase of SiNx onto TiN(001) and TiN(111) can be crystalline, and even epitaxial with complex surface reconstructions. Using in situ structural analyses combined with ab initio calculations, it is found that SiNx layers grow epitaxially, giving rise to strong interfacial bonding, on both TiN(001) and TiN(111) surfaces. In addition, TiN overlayers grow epitaxially on SiNx/TiN(001) bilayers in nanolaminate structures. These results provide insight into the development of design rules for novel nanostructured materials.</p> / Report code: LiU-TEK-LIC-2006:51.
|
Page generated in 0.0756 seconds