• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 38
  • 26
  • 22
  • 19
  • 18
  • 18
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Microwear textures associated with experimental near-natural diets suggest that seeds and hard insect body parts cause high enamel surface complexity in small mammals

Winkler, Daniela E., Clauss, Marcus, Kubo, Mugino O., Schulz-Kornas, Ellen, Kaiser, Thomas M., Tschudin, Anja, De Cuyper, Annelies, Kubo, Tai, Tütken, Thomas 11 March 2024 (has links)
In mammals, complex dental microwear textures (DMT) representing differently sized and shaped enamel lesions overlaying each other have traditionally been associated with the seeds and kernels in frugivorous diets, as well as with sclerotized insect cuticles. Recently, this notion has been challenged by field observations as well as in vitro experimental data. It remains unclear to what extent each food item contributes to the complexity level and is reflected by the surface texture of the respective tooth position along the molar tooth row. To clarify the potential of seeds and other abrasive dietary items to cause complex microwear textures, we conducted a controlled feeding experiment with rats. Six individual rats each received either a vegetable mix, a fruit mix, a seed mix, whole crickets, whole black soldier fly larvae, or whole day-old-chicks. These diets were subjected to material testing to obtain mechanical properties, such as Young’s modulus, yield strength, and food hardness (as indicated by texture profile analysis [TPA] tests). Seeds and crickets caused the highest surface complexity. The fruit mix, seed mix, and crickets caused the deepest wear features. Moreover, several diets resulted in an increasing wear gradient from the first to the second molar, suggesting that increasing bite force along the tooth row affects dental wear in rats on these diets. Mechanical properties of the diets showed different correlations with DMT obtained for the first and second molars. The first molar wear was mostly correlated with maximum TPA hardness, while the second molar wear was strongly correlated with maximum yield stress, mean TPA hardness, and maximum TPA hardness. This indicates a complex relationship between chewing mechanics, food mechanical properties, and observed DMT. Our results show that, in rats, seeds are the main cause of complex microwear textures but that hard insect body parts can also cause high complexity. However, the similarity in parameter values of surface textures resulting from seed and cricket consumption did not allow differentiation between these two diets in our experimental approach.
92

Biomechanical Responses of Human Surrogates under Various Frontal Loading Conditions with an Emphasis on Thoracic Response and Injury Tolerance

Albert, Devon Lee 04 June 2018 (has links)
Frontal motor vehicle collisions (MVCs) resulted in 10,813 fatalities and 937,000 injuries in 2014, which is more than any other type of MVC. In order to mitigate the injuries and fatalities resulting from MVCs, new safety restraint technologies and more biofidelic anthropomorphic test devices (ATDs) have been developed. However, the biofidelity of these new ATDs must be evaluated, and the mechanisms of injury must be understood in order to accurately predict injury. Evaluating the biomechanical response, injury mechanisms, and injury threshold of the thorax are particularly important because the thorax is one of the most frequently injured body regions in MVCs. Furthermore, sustaining a severe thoracic injury in an MVC significantly increases mortality risk. The overall objective of this dissertation was to evaluate the biomechanical responses of human surrogates under various frontal loading conditions. This objective was divided into three sub-objectives: 1) to evaluate the biofidelity of the current frontal impact ATDs, 2) to evaluate the effect of different safety restraints on occupant responses, and 3) to evaluate rib material properties with respect to sex, age, structural response, and loading history. In order to meet sub-objectives 1 and 2, full-scale frontal sled tests were performed on three different human surrogates: the 50th percentile male Hybrid III (HIII) ATD, the 50th percentile male Test Device for Human Occupant Restraint (THOR-M) ATD, and approximately 50th percentile male post-mortem human surrogates (PMHS). All surrogates were tested under three safety restraint conditions: knee bolster (KB), KB and steering wheel airbag (KB/SWAB), and knee bolster airbag and SWAB (KBAB/SWAB). The kinematic, lower extremity, abdominal, thoracic, and neck responses were then compared between surrogates and restraint conditions. In order to assess biofidelity, the ATD responses were compared to the PMHS responses. For both the kinematic and thoracic responses, the HIII and THOR-M had comparable biofideltiy. However, the HIII responses were slightly more biofidelic. The ATDs experienced similar lower extremity kinetics, but very different kinetics at the upper and lower neck due to differences in design. Evaluation of the different restraint conditions showed that the SWAB and KBAB both affected injury risk. The SWAB decreased head injury risk for all surrogates, and increased or decreased thoracic injury risk, depending on the surrogate. The KBAB decreased the risk of femur injury, but increased or decreased tibia injury risk depending on the surrogate and injury metric used to predict risk. In order to meet sub-objective 3, the tensile material properties of human rib cortical bone and the structural properties of whole ribs were quantified at strain rates similar to those observed in frontal impacts. The rib cortical bone underwent coupon tension testing, while the whole ribs underwent bending tests intended to simulate loading from a frontal impact. The rib material properties accounted for less than 50% of the variation observed in the whole rib structural properties, indicating that other factors, such as rib geometry, were also influencing the structural response of whole ribs. Age was significantly negatively correlated with the modulus, yield stress, failure strain, failure stress, plastic strain energy density, and total strain energy density. However, sex did not significantly influence any of the material properties. Cortical bone material properties were quantified from the ribs that underwent the whole rib bending tests and subject-matched, untested (control) ribs in order to evaluate the effect of loading history on material properties. Yield stress and yield strain were the only material properties that were significantly different between the previously tested and control ribs. The results of this dissertation can guide ATD and safety restrain design. Additionally, this dissertation provides human surrogate response data and rib material property data for the validation of finite element models, which can then be used to evaluate injury mitigation strategies for MVCs. / PHD
93

Electrostatically actuated LIGA-MEMS structures with high aspect ratio beams for RF applications and mechanical property extraction

2012 September 1900 (has links)
Microelectromechanical systems (MEMS) devices have been increasing in popularity for radio frequency (RF) and microwave communication systems due to the ability of MEMS devices to improve the performance of these circuits and systems. This interdisciplinary field combines the aspects of lithographic fabrication, mechanics, materials science, and RF/microwave circuit technology to produce moving structures with feature dimensions on the micron scale (micro-structures). MEMS technology has been used to improve switches, varactors, and inductors to name a few specific examples. Most MEMS devices have been fabricated using planar micro fabrication techniques that are similar to current integrated circuit (IC) fabrication techniques. These techniques limit the thickness of individual layers to a few microns, and restrict the structures to have planar and not vertical features. One micro fabrication technology that has not seen much application to microwave MEMS devices is LIGA, a German acronym for X-ray lithography, electroforming, and moulding. LIGA uses X-ray lithography to produce very tall structures (hundreds of microns) with excellent structural quality, and with lateral feature sizes smaller than a micron. These unique properties have led to an increased interest in LIGA for the development of high performance microwave devices, particularly as operating frequencies increase and physical device size decreases. Existing work using LIGA for microwave devices has concentrated on statically operating structures such as transmission lines, filters, couplers, and antennas. This research uses these unique fabrication capabilities to develop dynamically operating microwave devices with high frequency performance. This thesis documents the design, fabrication and testing of LIGA-MEMS variable capacitors that exploit the vertical dimension. Also included are methods to improve both the reliable fabrication and operation of these devices as well as material property characterization. Variable capacitors can be found in systems such as voltage-controlled oscillators, filters, impedance matching networks and phase shifters. Important figures-of-merit for these devices include the quality factor (Q), tuning range and tuning voltage. Two different types of variable capacitors are presented, a pull-away design and a design based on the principle of leveraged bending. The pull-away style variable capacitors were found to have high Q-factors, especially the devices fabricated using a thick gold device layer. As an example, the small gold half capacitance electrode design features a Q-factor of 95 at an operating frequency of 5.6 GHz and a tuning ratio of 1.36:1 with a tuning voltage range of 0 to 7.8 V. The design based on leveraged bending significantly improves the tuning ratio to a value of 1.9:1 while still maintaining a high Q-factor similar to those found in the pull-away style designs. A further increase in tuning ratio to a value of approximately 2.7:1 would be possible, based on simulated results, by simply changing the angle of the capacitance electrode in the layout. To improve device performance and fabrication reliability, modifications were made to both the fabrication process and the device layout. In the fabrication process the exposure step, electroplating step, and the etching process were modified to improve the quality of the resulting devices. In the layout, anti-stiction measures were introduced that reduce the contact area during collapse. To improve device characterization as well as the feedback link between simulation and fabrication, a set of test structures called VM-TEST was developed to accurately determine the important mechanical material properties of thick electroplated layers. These structures utilize the measurement of the pull-in voltage in cantilever and fixed-fixed beams, along with measured structure dimensions, to accurately extract the mechanical properties. Both nickel and gold test structures were analyzed with extracted Young’s modulus values of 186.2 and 60.8 GPa respectively. Also presented is a study of the gap shape in cantilever and fixed-fixed beams that significantly reduces the pull-in voltage while still maintaining a required maximum actuator displacement. It was shown that in the case of cantilever beam actuators, an approximately 40% reduction in pull-in voltage is possible, and in the case of fixed-fixed beam actuators, an approximately 30% reduction is possible by simply varying the shape of the gap between the beam and actuator electrode. These results can be used to significantly reduce the pull-in voltage of future designs. These promising results show that the LIGA fabrication process is capable of producing high performance dynamically operating RF MEMS devices, by exploiting the vertical dimension, not typically performed in most existing RF MEMS designs.
94

Process development for the robust production of polyhydroxyalkanoates

Ferré, Anna January 2018 (has links)
Polyhydroxyalkanoates (PHA) are a family of biodegradable polyesters naturally synthesised by some bacteria and archaea. PHA have high industrial value as bioplastics for packaging and biomedical applications. However, their broader use is hindered by high production costs and uncontrolled variation of polymer properties. The extreme halophile Haloferax mediterranei shows bioprocess advantages that can be exploited for the low cost production of the PHA copolymer Poly(3-hydroxbutyrate-co-3-hydroxyvalterate) (PHBV). The focus of this thesis is to identify process variables responsible for the uncontrolled variation of PHA properties in order to progress towards the robust production of PHBV using H. mediterranei. The outcome of the investigation is a novel cultivation strategy for the reliable synthesis of PHBV copolymers with controlled composition and microstructure showing minor differences in material characteristics. Initially, growth kinetics and PHBV synthesis were characterised under nitrogen-excess and nitrogen-limiting conditions in ammonium and for the first time, nitrate. The nitrogen source and concentration influenced PHBV accumulation and variations in polymer composition were observed with ammonium, highlighting the importance of the control of cultivation conditions. Volatile fatty acids (VFA) were found to be a more direct approach to determine PHBV composition and for the first time were used as substrates in H. mediterranei cultures. When the cells were grown in C4:0/C5:0 mixtures, the 3HV fraction in the PHBV was proportional to the percentage of C5:0 in the feed mixture, allowing the synthesis of copolymers with a predefined composition ranging from pure PHB to pure PHV. The cultivation strategy proved effective for the synthesis of HV rich PHBV, which is not easily obtained due to the 3HV precursor toxicity. The polymer microstructure was controlled using different feeding strategies: co-feeding generated random copolymers, while sequential feeding created block and blend copolymers. The synthesis of block copolymers is of interest because the materials show enhanced yield strength and mechanical strength, making such materials more suitable for commodity uses. Bespoke random, block, and blend copolymers with 0−100 mol% 3HV were synthesized and their thermal and mechanical properties studied. Lastly, high temperature cultivation and several surfactants were tested to enhance the production of bespoke PHBV from VFA. PHBV productivity and accumulation was greatly improved in a fed-batch bioreactor fermentation at 37°C with Tween-80 and the maximum PHBV content 58.9% was obtained. The polymers from shake-flasks and from bioreactors showed minor variations in their material properties, demonstrating the scalability and the robustness of the process developed. Further understanding of the different process variables affecting polymer synthesis and composition was gained in this thesis. It is now possible to produce PHBV with controllable composition, microstructure and minor differences in material characteristics. The novel and robust production strategy developed address the bioprocess challenge of minimising the uncontrolled variation of polymer characteristics that is currently hindering the wider use of PHA hence allowing the production of high quality polymers for commodity goods, packaging and biomedical applications.
95

Material Thermal Property Estimation of Fibrous Insulation: Heat Transfer Modeling and the Continuous Genetic Algorithm

Frye, Elora 01 January 2018 (has links)
Material thermal properties are highly sought after to better understand the performance of a material under particular conditions. As new materials are created, their physical properties will determine their performance for various applications. These properties have been estimated using many techniques including experimental testing, numerical modeling, and a combination of both. Existing methods can be time consuming, thus, a time-efficient and precise method to estimate these thermal properties was desired. A one-dimensional finite difference numerical model was developed to replicate the heat transfer through an experimental apparatus. A combination of this numerical model and the Continuous Genetic Algorithm optimization technique was used to estimate material thermal properties of fibrous insulation from test data. The focus of this work was to predict these material thermal properties for an Alumina Paper that is commonly used in aerospace applications. The background, methodology, and results are discussed.
96

Teknik i förskolan : En studie om hur 4 - 5 åringars uppfattningar om material och dess egenskaper kan utvecklas genom en pedagogisk aktivitet / Technology in preschool : A study of how 4 - 5 year old children´s perceptions of materials and their properties can be developed through an educational activity

Klaar Gustavsson, Frida January 2013 (has links)
The purpose of this work is to investigate how 4-5 year olds perceptions of materials and material properties can be developed through an educational activity. The study is based on two interviews with eight children in that age category. The interviews were conducted before and after an activity where the children were first introduced to the subject by the tale of The three little pigs (Harris, 2009) and then given the opportunity to explore various materials related to the book. The kids got to experiment and explore how water affected materials and to compare different materials properties. The children were also attracted to build and create the material that was offered during the activity. The results of the survey show that children through practical exploration and surveying of the material increased their perceptions of concepts, properties and use of the materials in question. The children explored the materials with their minds and with the body in interaction with their peers and participating adult. The children were inspired by the book and each other in their creative work. Through dialogue and communication during the activity, similarities and differences were compared and the children developed their conceptual understanding.
97

Strukturelle Klebungen mit UV- und lichthärtenden Acrylaten

Vogt, Iris 04 September 2009 (has links) (PDF)
UV- und lichthärtenden Acrylatklebstoffen steht ein breites Anwendungsspektrum im Konstruktiven Glasbau offen. Ihr farbloses und klares Erscheinungsbild fördert eine Konstruktion, die transparent und leicht wirken soll. Kurze Aushärtezeiten, die sich im Sekunden- oder einstelligen Minutenbereich bewegen, ermöglichen eine schnelle Herstellung und reduzieren die Lagerzeiten. Die geklebten Konstruktionen können direkt weiterverarbeitet werden. Durch diese Vorteile heben sie sich von den Silikonklebstoffen ab, die für ausge-wählte Anwendungen im Fassadenbau (Structural-Sealant-Glazing-Systems - SSGS) bauaufsichtlich zugelassen sind. Gegenstand dieser Arbeit ist die Aufstellung von Empfehlungen zur Planung und Berechnung struktureller Klebungen mit strahlungshärtenden Acrylaten. Dafür werden Klebstoffe an dem reinen Material sowie in Verbindungen mit Glas und Metall untersucht. Für ein umfangreiches Bild über das Verhalten des Materials bieten sich Substanzprüfkörper an, die mit überschaubarem Aufwand eine Auswertung verschiedener Einflüsse - beispielsweise Temperatur und Prüfgeschwindigkeit - erlauben. An in-situ-Prüfkörpern kann der Klebstoff in der Verbindung betrachtet werden. Durch Wechselwirkungen zwischen Klebstoff und Fügeteil bildet sich eine sogenannte Grenzschicht aus, die gradierte Eigenschaften besitzt und die Materialkennwerte - besonders bei dünnen Klebfugen - beeinflusst. Weiterhin erlauben diese Prüfkörper eine Aussage über das Tragverhalten der Klebverbindung. Um das Potenzial der Acrylatklebungen in der Glasarchitektur aufzuzeigen und in der Anwendung zu prüfen, werden Bauteile mit punktförmig geklebten Halterungen untersucht. Absturzsicherungen werden statischen und dynamischen Belastungen unterworfen. An Überkopfverglasungen werden Trag- und Resttragfähigkeitsuntersuchungen durchgeführt. Bauteile im Freien geben Aufschluss über das Alterungsverhalten unter natürlichen klimatischen Bedingungen. / UV and light curing acrylates present a whole host of possibilities for the implementation of glass construction. Their clear and colourless appearance produces a transparent and lightweight construction. Short curing times consisting of no more than mere minutes allow for quick production with minimal downtime within the overall process. Processing can be resumed immediately once bonding has occurred. The advantages of acrylates can be compared to the characteristics and properties of adhesive silicones which have been widely approved by building authorities for specific façade applications (Structural-Sealant-Glazing-Systems - SSGS). The subject matter of this study is the development of auxiliary tools to plan and design adhesively bonded joints of UV and light curing acrylates. These adhesives are, therefore, analysed both generally as bulk material and in applications as a joint between glass and metal. The use of dog bone shaped specimens is recommended to analyze the material behaviour under a variety of influence factors such as temperature and testing rate. The bonded joints of test specimens provide an opportunity to examine the interaction between the adhesive and the materials to which they are adhered. An interface with graded properties is formed based upon the interactions between adhesive joints and each particular substrate. Further on, bonded specimens enable the development of a statement concerning the load-bearing capacity of joints. Constructions having spot bonded joints are tested to demonstrate the potential use of acrylic joints in architectural glass treatments. Safety barriers are tested under both static and dynamic loads. Sloped roof systems are tested to substantiate load-bearing capacity and to verify any residual carrying capacity. Components are exposed to natural weathering in order to examine the affects of ageing on the adhesive.
98

Thermo-Mechanical Beam Element for Analyzing Stresses in Functionally Graded Materials

Caraballo, Simon 01 January 2011 (has links)
Modeling at the structural scale most often requires the use of beam and shell elements. This simplification reduces modeling complexity and computation requirements but sacrifices the accuracy of through-the-thickness information. Several studies have reported various design approaches for analyzing functionally graded material structures. One of these studies proposed a two-node beam element for functionally graded materials (FGMs) based on first order shear deformable (FOSD) theory. The derivation of governing equations included spatial temperature variation. However, only the constant temperature case was carried through in the element formulation. This investigation explore the effects of spatial temperature variation in the axial and through-the-thickness direction of this proposed element and present a new standard three-node beam finite element modified for structure constructed of FGMs. Also, the influence of the temperature dependency of the thermo-elastic material properties on the thermal stresses distribution was studied. In addition, variations in the layer thicknesses within multilayer beam models were studied to determine the effect on stresses and factor of safety. Finally, based on the specific factor of safety, which combines together the strength and mass of the beam, the best layer thicknesses for the beam models were established. The key contributions expected from this research are: 1. development and implementation of a three-node beam element as a finite element code into the commercial computational tool MATLAB® to analyze thermo-mechanical stresses in structures constructed of functionally graded materials; 2. a strategy to simulate different load cases in structures constructed of functionally graded materials; 3. an analysis of the influence of the FGM interlayer thickness on the factor of safety/specific gravity ratio in structures constructed of functionally graded materials under thermo-mechanical loads; 4. and an analysis/comparison of the advantages/benefits of using structures constructed of functionally graded materials with respect to those constructed with homogenous materials.
99

Einflüsse der Materialzusammensetzung auf die Schweißeignung von PLA-Folien

Stöhr, Neda, Baudrit, Benjamin 07 April 2015 (has links) (PDF)
Verpackungen sind aus unserem täglichen Leben nicht mehr wegzudenken. Sie tragen durch ihre Schutzfunktion zum Erhalt der Produktqualität bei, ermöglichen eine effektive Logistik und minimieren die Kosten in der Lieferkette. Der aktuell am weitesten verbreitete Kunststoff aus nachwachsenden Rohstoffen (Biokunststoff) ist Polymilchsäure (PLA, englisch polylactic acid).
100

加熱・冷却された構造用鋼溶接部の材料特性に関する基礎的研究

ITOH, Yoshito, KITANE, Yasuo, HIROHATA, Mikihito, 伊藤, 義人, 北根, 安雄, 廣畑, 幹人 11 1900 (has links)
No description available.

Page generated in 0.0816 seconds