• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 10
  • 10
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 422
  • 422
  • 168
  • 84
  • 81
  • 79
  • 55
  • 54
  • 40
  • 37
  • 37
  • 34
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

An Initial Exploration of Transition Metal Nitroprussides as Electrode Materials for Sodium-ion Batteries

Enblom, Veronica January 2022 (has links)
Na-ion batteries (NIBs) are expected to revolutionise the battery sector by promising an affordable technology while capitalising on sustainable development. To compete with Li-ion batteries, however, electrode materials with higher capacities need to be developed. Transition metal nitroprussides (TM-NPs), NaxM[Fe(CN)5NO]1-y ·zH2O, is a material class derived from one of the most popular positive electrode materials for NIBs, Prussian blue analogues (PBAs), where one of the cyano ligands have been replaced by an electroactive nitrosyl (NO) ligand. Thus, in theory TM-NPs should be able to reach higher capacities than PBAs and therefore be attractive candidates for high-capacity electrodes. However, if the nitrosyl is redox active in NIBs and how the cycling behaviour may be affected by the M cation is unknown. The focus in this thesis is therefore to explore the charge-discharge behaviour of four different TM-NPs (M=Fe, Ni, Mn, and Cu) in Na-ion half-cell batteries to gain an initial understanding of their electrochemical behaviour and to set up research questions to be pursued in the future. Based on our observations and previous studies, we propose that the nitrosyl is electrochemically active in all four TM-NPs, and that it contributes with a considerable amount of capacity, although with a large voltage hysteresis. It is further concluded that all M cations apart from Ni were redox active, but to varying degrees on charging and discharging. We argue that both the redox and the voltage hysteresis is caused by anisotropic charge transfer within the materials, and that it needs to be understood before commercialisation of TM-NPs can be realised. Though there are challenges to overcome, the many interesting attributes of TM-NPs, including anionic redox, anisotropic charge transfer and structural diversity, makes them promising as a new type of cheap and sustainable electrode material for NIBs.
352

Additive manufacturing of lunar regolith simulant using direct ink writing

Grundström, Billy January 2020 (has links)
In this work, the use of a lunar regolith simulant as feedstock for the direct ink writing additive manufacturing process is explored, the purpose of which is to enable future lunar in-situ resource utilisation. The feasibility of this approach is demonstrated in a laboratory setting by manufacturing objects with different geometries using methyl cellulose or sodium alginate as binding agents and water as liquid phase together with the lunar regolith simulant EAC-1A to create a viscous, printable ‘ink’ that is used in combination with a custom three-axis gantry system to produce green bodies for subsequent sintering. The sintered objects are characterised using compressive strength measurements and scanning electron microscopy (SEM). It is proposed that the bioorganic compounds used in this work as additives could be produced at the site for a future lunar base through photosynthesis, utilising carbon dioxide exhaled by astronauts together with the available sunlight, meaning that all the components used for the dispersion – additive, water (in the form of ice) and regolith – are available in-situ. The compressive strength for sintered samples produced with this method was measured to be 2.4 MPa with a standard deviation of 0.2 MPa (n = 4). It is believed, based on the high sample porosity observed during SEM analysis, that the comparatively low mechanical strength of the manufactured samples is due to a non-optimal sintering procedure carried out at a too-low temperature, and that the mechanical strength could be increased by optimising the sintering process further.
353

Nanocellulose surface functionalization for in-situ growth of zeolitic imidazolate framework 67 and 8

Abdulla, Beyar January 2020 (has links)
This master’s thesis was conducted at the Department of Nanotechnology and Functional Materials at Ångström Laboratory as part of an on-going project to develop hybrid nanocomposites from Cladophora cellulose and a sub-type of metal-organic frameworks; zeolitic imidazolate frameworks (ZIFs). By utilizing a state-of-the-art interfacial synthesis approach, in-situ growth of ZIF particles on the cellulose could be achieved. TEMPO-mediated oxidation was diligently used to achieve cellulose nanofibers with carboxylate groups on their surfaces. These were ion-exchanged to promote growth of ZIF particles in a nanocellulose solution and lastly, metal ions and organic linkers which the ZIFs are composed of were added to the surface functionalized and ion-exchanged nanocellulose solution to promote ZIF growth. By vacuum filtration, mechanical pressing and furnace drying; freestanding nanopapers were obtained. A core-shell morphology between the nanocellulose and ZIF crystals was desired and by adjusting the metal ion concentration, a change in morphologies was expected. The nanocomposites were investigated with several relevant analytical tools to confirm presence, attachment and in-situ growth of ZIF crystal particles upon the surface of the fine nanocellulose fibers. Both the CNF@ZIF-67 and CNF@ZIF-8 nanocomposites were successfully prepared as nanopapers with superior surface areas and thermal properties compared to pure TEMPO-oxidized cellulose nanopapers. The CNF@ZIFs showcased hierarchical porosities, stemming from the micro- and mesoporous ZIFs and nanocellulose, respectively. Also, it was demonstrated that CNF@ZIF-8 selectively adsorbed CO2 over N2. Partial formation of core-shell structure could be obtained, although a relationship between increased metal ions and ZIF particle morphology could not wholly be observed.
354

Characterization of uranium oxide powders and sinterability / Karaktärisering av uranoxidpulver och sintringsaktivitet

Ceder, Joakim January 2021 (has links)
Uranoxid (UOx) är ett energitätt material som ofta används i kärnbränsle. UOx-pulver pressas och sintras för att tillverka urandioxidkutsar som förs in i bränslestavar. Stavarna monteras slutligen ihop till ett bränsleknippe. Tillverkningsprocessens stabilitet och förutsägbarhet är viktiga. För att åstadkomma önskvärda egenskaper hos UO2-kutsarna är karaktärisering av UOx-pulvret centralt. Sintringsaktivitet är den viktigaste egenskapen när det kommer till att beskriva hur UOx-pulvret beter sig vid reduktion i högtemperatursintring. Återcyklat UO2 oxideras till U3O8 och kan användas till att styra sintringsaktiviteten tack vare dess porbildande egenskaper. Denna rapport beskriver karaktäriseringen av UOx-pulver och kuts med avseende på fysiokemiska egenskaper relaterade till sintringsaktivitet. Statistiska analyser av historiska data utfördes även och visade på en komplex relation mellan pulveregenskaper och sintringsaktivitet. Effekten av U3O8-pulver i blandningar av UO2-pulver med hög och låg sintringsaktivitet undersöktes. Att variera U3O8-batch hade ingen inverkan på diameterkrympning efter sintring utom i ett fall. Blandningar av UO2-pulver visade på avvikande egenskaper jämfört med det jungfruliga pulvret. UO2-pulvrets kemiska aktivitet undersöktes via oxidering med H2O2. Förbrukningshastigheten av H2O2 var densamma för hög- och lågaktiva UO2-pulver vid samma förhållande mellan specifik yta och lösningsvolym. / Uranium oxide (UOx) is an energy dense material commonly used in nuclear fuel. UOx powder is pressed and sintered to produce uranium dioxide (UO2) pellets which are loaded into fuel rods. The rods are then mounted together in a final nuclear fuel assembly. Stability and predictability of the manufacturing processes during UO2 pellet production is of high importance. To achieve desired properties and quality of the UO2 pellets, the ability to assess the characteristics of the UOx powder is crucial. Sinterability is the most important characteristic which describes the behavior of the UOx powder during reduction in high temperatures. Recycled uranium dioxide is oxidized into U3O8 powder which can be used to modify the sinterability due to its pore forming ability. This study describes the characterization of uranium oxide powders and pellets regarding physicochemical properties relating to sintering behavior. Statistical analyses of historical data were also performed and showed a complexity of the relation between powder properties and  sinterability. The effect of U3O8 powder in different blends of UO2 powders of high and low sinterability were analyzed. Varying U3O8 powder batch did not influence the diameter shrinkage after sintering except for one case. UO2 powder blends showed deviating behavior from their virgin powder constituents. Chemical activity of UO2 was analyzed by oxidation with H2O2. The consumption rate of H2O2 was shown to be equal for active and incative UO2 powders under equal specific surface area/solution volume ratio.
355

In-vitro wear and hardness of new conventional glass ionomer cement coated with nano-filled resin

AlJamhan, Abdullah Saleh January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background: Since the introduction of glass ionomer cements (GICs) in the 1970s, many attempts have been made to improve them and expand their application in restorative dentistry. Recently, GC America introduced a new glass ionomer restorative system called EQUIA. The manufacturer claims that this material has improved wear resistance by coating the surface of high-strength GIC with a nano-filled resin coating. Objective: The objective of this study was to measure the wear resistance and hardness of EQUIA and to compare it to other current restorative materials. Materials and Methods: Four different materials were used in this study: EQUIA, Fuji IX GP Extra, Fuji II LC and Z-100. Six specimens of each material were made and then tested in a toothbrush abrasion machine for 20,400 cycles, after which the amount of volume loss was calculated. Eight specimens of each material were made and tested in a three-body Alabama wear testing machine under a load of 75 N for 400,000 cycles. Four surface profiles were obtained from each specimen and volume loss was calculated using computer software. Five specimens of each material were made and Knoop microhardness was determined by using the mean of the three values from the top surface of the specimen. Results of each test were collected and compared with the other materials using one-way analysis of variance (ANOVA) at a significance level of 0.05. Results: Wear-resistance results showed that EQUIA has wear-resistance values comparable to composite resin and higher values than those for the high-strength GIC. The results also showed that Fuji II LC had the highest wear among all tested materials. Microhardness results showed that EQUIA has significantly lower microhardness than Fuji IX GP Extra and Z-100. Conclusion: Based on the results of the present study, it can be concluded that coating the surface of glass ionomer restorations with a nano-filled resin coat results in increasing the wear resistance and decreasing the microhardness of the material. Within the limitations of this study, EQUIA has comparable wear resistance to composite resin.
356

Effect of full-contour Y-TZP zirconia surface roughness on wear of glass-based ceramics

Luangruangrong, Palika, 1983- January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The use of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), normally employed as a framework for all-ceramic restorations, has now started to be used without any veneering ceramics in patients with parafunctional activities. The aims of this study were to evaluate the influence of Y-TZP surface roughness on the wear behavior (volume/height loss) against glass-based ceramics (i.e., IPS Empress CAD and IPS e.max CAD, Ivoclar-Vivadent). Thirty-two Y-TZP full-contour zirconia (Ardent®) sliders (ϕ=2 mm, 1.5 mm in height) were milled in a CAD/CAM unit and sintered according to the manufacturer instructions. Sliders were embedded in brass holders using acrylic resin and then randomly allocated into 2 groups according to the surface treatment (n=16): G1-as-machined and G2-glazed (Diazir®). Empress and e.max antagonists were cut into tabs (13×13×2 mm) wet-finished and also embedded in brass holders. Two-body pin-on-disc wear testing was performed at 1.2 Hz for 25,000 cycles under a 3-kg load. Non-contact profilometry was used to measure antagonist height (μm) and volume loss (mm3). Qualitative data of the testing surfaces and wear tracks were obtained using SEM. Statistics were performed using one- and two-way ANOVAs (α=0.05). The results indicated that G1 yielded significantly higher mean roughness values (Ra=0.83 μm, Rq=1.09 μm) than G2 (Ra=0.53 μm, Rq=0.78 μm). Regarding antagonist loss, G1 caused significantly less antagonist mean height and volume loss (68.4 μm, 7.6 mm3) for Empress than G2 (84.9 μm, 9.9 mm3) while no significant differences were found for e.max. Moreover, Empress significantly showed lower mean height and volume loss than e.max (p<0.0001). SEM data revealed morphological differences on wear characteristics between the two ceramics against Y-TZP. Within the limitations of this study, e.max wear was not affected by Y-TZP surface roughness. However, Empress wear was greater when opposing glazed Y-TZP. Overall, based on our findings, surface glazing on full-contour Y-TZP did not minimize glass-ceramic antagonist wear when compared with as-machined group.
357

A laboratory evaluation of detail reproduction, contact angle, and tear strength of three elastomeric impression materials

Sun, Ming January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fabrications of desirable fixed or removable dental prostheses depend upon accurate casts or dies. Recently, the most frequently used impression materials have been polyether (PE) and polyvinyl siloxane (PVS). However, both have their limitations: PVS is inherently hydrophobic, and PE is rigid. In order to take advantage of the desirable qualities of both PVS and PE impression materials, a new generation of impression material is being developed called vinyl polyether silicone (VPES, GC). The purpose of the present study was to compare the properties of hydrophilic PVS, PE, and VPES in regard to surface detail reproduction, contact angle, and tear strength. The hypotheses to be tested were: 1) VPES will show a significant superiority insurface detail reproduction compared with PVS and PE impression materials; 2) VPES will show a significant superiority in wettability compared with PVS and PE impression materials; 3) VPES will show a significant superiority in tear strength compared with PVS and PE impression materials. In order to test the surface detail reproduction, impressions were made of stainless steel dies with a parallel series of 15 different width lines on the surface and tested under dry and moist conditions. The wettability was assessed by contact angles of saturated CaSO4 aqueous solution drops on flat impression surfaces. A trouser tear test was employed to test the tear strength. The trouser-shaped specimens were prepared and tested in the Instron Universal Testing Machine. The data were analyzed by one-way ANOVA and Pearson‘s Chi square, (p < 0.05). All the materials showed better detail reproduction under the dry conditions than the moist conditions. There were no differences between the three materials in detail reproduction when impressing under either moist conditions or dry conditions. All the materials showed good wettability in the contact angle test. PVS rendered a contact angle as low as 34.19º. The contact angle of VPES was 44.84º, which was lower than 54.76º for PE. In the tear strength test, PE showed nearly two time higher tear strength than the other two impression materials. VPES showed slightly lower tear strength than PVS. The tear strength of the three materials tested in increasing order was VPES, PVS, PE. VPES showed comparable detail reproduction to PVS and PE and better wettability than PE, but showed the lowest tear strength compared with PE and PVS.
358

Mesoporous Functionalized Materials for Post-Combustion Carbon Dioxide Capture.

Ojo, Kolade Omoniyi 17 December 2011 (has links) (PDF)
Novel highly functionalized hybrid organic-inorganic materials were synthesized by polycondensation of bis[3-(trimethoxysilyl)propyl]amine in presence of cationic and anionic surfactants. Reaction media strongly affected gelation time. Thus, in basic media gelation occurred immediately while acid increased gelation time. Material structures were studied by IR spectroscopy, porosimetry, XRD, and SAXS methods. In spite of the absence of an inorganic linker, obtained bridged silsesquioxanes had mesoporous structure. A material prepared in the presence of dodecylamine as a template had higher surface area and narrow pore size distribution while the use of sodium dodecylbenzene sulfate resulted in formation of mesopores with wide size ranges. Accessibility of surface amine groups in silsesquioxanes was studied for molecules of acidic nature and different sizes: HCl, CO2 and picric acid. High contents of accessible amine groups in these materials make them prospective adsorbents for post-combustion CO2 capture.
359

Investigation on how additive manufacturing with post-processing can be used to realize micronozzles

Bugurcu, Alan January 2022 (has links)
This is predominantly a qualitative study on the manufacturing of micronozzles with an additive manufacturing (AM) technique, namely the laser-powered powder bed fusion (PBF-LB).  Manufacturing of micronozzles with standard microelectromechanical system technology often results in 2.5-D or close to 3-D structures and does not yield a fully rotationally symmetric nozzle. For this reason, AM can be a better solution. However, the structures obtained with PBF-LB exhibit very rough surfaces which will impair the performance of the micronozzle. To improve the surface finish electropolishing was performed on the interior walls.  Given the shape and the scale of the components, uniformity of the polishing is a challenge, calling for an inventive electrode configuration and electrolyte feed solution. The approach was to integrate an electrode on the inside of the converging part of the nozzle, to serve as a cathode for the electropolishing, already in the process, and to make the nozzle itself the vital part of the fluidic system.  With this, titanium micronozzles were manufactured with throat diameters varying between 300 and 800 μm. With the resolution of the used AM technique, it was possible to integrate the internal electrode in the micronozzles with a designed throat diameter down to 600 μm. Below this, the anode, and cathode, sometimes made contact short-circuiting the cell. Profilometry showed a decrease of the average surface roughness (𝑅𝑅𝑎𝑎) with 15-60 % for the electropolished micronozzles. The Schlieren imaging showed an exhaust that followed the throat’s axial direction and also demonstrated pressure disks and, hence, a supersonic jet exhaust. This study has shown that AM is a viable choice for manufacturing of rotationally symmetric micronozzles, and that electropolishing could be used to decrease the surface roughness on their inside uniformly with the integration of a cathode.
360

A Comparison of Solvent and Water-Borne Alkyd Coatings and the History of VOC Regulations in the United States

Burns, Molly Elise 01 September 2016 (has links) (PDF)
A Comparison of Solvent and Water-Borne Alkyd Coatings Abstract Conventional solvent based alkyd coatings have gone out of favor due to concerns over volatile organic compound (VOC) content. However, due to recent focus on renewable raw materials, alkyds are making a comeback in waterborne form. Water based alkyd coatings are known to have poor shelf stability and corrosion resistance, as well as other problems during the formulation process. This project focused on comparing solvent borne to two types of water-borne alkyds, water reducible alkyds and alkyds emulsions. The purpose was to understand the differences between the three types of alkyds in terms of their production and final properties. It was ultimately hoped that the formulations used for this project would prove to solve the problems normally experienced by waterborne alkyds. After testing several chemical and physical properties, it was determined that the solvent borne alkyd coatings performed better than both water based systems in corrosion resistance, accelerated weathering, and shelf stability but the water reducible and emulsion alkyd coatings performed similarly to the solvent borne alkyd in gloss, contrast ratio, and durability. The VOC emissions for all three alkyd types were as expected; the solvent borne had the highest emission at 253 g/L, followed by water reducible with 166 g/L, and emulsion with 34 g/L. The History of VOC Regulations in the United States Abstract In another solvent based alkyd coating focused project within my research group, the question of the how volatile organic compound (VOC) regulation in the United States (U.S.) evolved came up. It quickly became apparent that no comprehensive answer to this question existed. Part two of this project is an attempt to answer this question in a comprehensive manner. VOC regulations started in California in the late 1970s, and paints and coatings became a nationally regulated emission source by the 1990s. The U.S. government limited harmful emissions, such as smog and compounds contributing to ozone depletion, through Clean Air Acts. The first Clean Air Act was enacted in 1965, but it wasn’t until the Clean Air Act of 1990 that VOC emissions became a focus. VOCs are not inherently hazardous but are a source of concern because they serve as a precursor to the formation of damaging ground level ozone. The Environmental Protection Agency (EPA) has established the minimum VOC emission limits in the Architectural and Industrial Maintenance (AIM) federal rule, but each state or state subdivision can enforce stricter limits within their borders. The strictest limits are set by the South Coast Air Quality Management District (SCAQMD) in Southern California, but other entities exist. This report thoroughly documents the history of VOC regulation in the United States by collecting, combining, organizing, and summarizing information gathered from various industries and government publications, agency members, and industrial and academic professionals.

Page generated in 0.1023 seconds