411 |
Sélection de variables pour la classification non supervisée par mélanges gaussiens. Application à l'étude de données transcriptomes.Maugis, Cathy 21 November 2008 (has links) (PDF)
Nous nous intéressons à la sélection de variables en classification non supervisée par mélanges gaussiens. Ces travaux sont en particulier motivés par la classification de gènes à partir de données transcriptomes. Dans les deux parties de cette thèse, le problème est ramené à celui de la sélection de modèles.<br />Dans la première partie, le modèle proposé, généralisant celui de Raftery et Dean (2006) permet de spécifier le rôle des variables vis-à-vis du processus de classification. Ainsi les variables non significatives peuvent être dépendantes d'une partie des variables retenues pour la classification. Ces modèles sont comparés grâce à un critère de type BIC. Leur identifiabilité est établie et la consistance du critère est démontrée sous des conditions de régularité. En pratique, le statut des variables est obtenu grâce à un algorithme imbriquant deux algorithmes descendants de sélection de variables pour la classification et pour la régression linéaire. L'intérêt de cette procédure est en particulier illustré sur des données transcriptomes. Une amélioration de la modélisation du rôle des variables, consistant à répartir les variables déclarées non significatives entre celles dépendantes et celles indépendantes des variables significatives pour la classification, est ensuite proposée pour pallier une surpénalisation de certains modèles. Enfin, la technologie des puces à ADN engendrant de nombreuses données manquantes, une extension de notre procédure tenant compte de l'existence de ces valeurs manquantes est suggérée, évitant leur<br />estimation préalable.<br />Dans la seconde partie, des mélanges gaussiens de formes spécifiques sont considérés et un critère pénalisé non asymptotique est proposé pour sélectionner simultanément le nombre de composantes du mélange et l'ensemble des variables pertinentes pour la classification. Un théorème général de sélection de modèles pour l'estimation de densités par maximum de vraisemblance, proposé par Massart (2007), est utilisé pour déterminer la forme de la pénalité. Ce théorème nécessite le contrôle de l'entropie à crochets des familles de mélanges gaussiens multidimensionnels étudiées. Ce critère dépendant de constantes multiplicatives inconnues, l'heuristique dite "de la pente" est mise en oeuvre pour permettre une utilisation effective de ce critère.
|
412 |
Performances statistiques de méthodes à noyauxLoustau, Sébastien 28 November 2008 (has links) (PDF)
Cette thèse se concentre sur le modèle de classification binaire. Etant donné $n$ couples de variables aléatoires indépendantes et identiquement distribuées (i.i.d.) $(X_i,Y_i)$, $i=1,\ldots ,n$ de loi $P$, on cherche à prédire la classe $Y\in\{-1,+1\}$ d'une nouvelle entrée $X$ où $(X,Y)$ est de loi $P$. La règle de Bayes, notée $f^*$, minimise l'erreur de généralisation $R(f)=P(f(X)\not=Y)$. Un algorithme de classification doit s'approcher de la règle de Bayes. Cette thèse suit deux axes : établir des vitesses de convergence vers la règle de Bayes et proposer des procédures adaptatives.<br /><br />Les méthodes de régularisation ont montrées leurs intérêts pour résoudre des problèmes de classification. L'algorithme des Machines à Vecteurs de Support (SVM) est aujourd'hui le représentant le plus populaire. Dans un premier temps, cette thèse étudie les performances statistiques de cet algorithme, et considère le problème d'adaptation à la marge et à la complexité. On étend ces résultats à une nouvelle procédure de minimisation de risque empirique pénalisée sur les espaces de Besov. Enfin la dernière partie se concentre sur une nouvelle procédure de sélection de modèles : la minimisation de l'enveloppe du risque (RHM). Introduite par L.Cavalier et Y.Golubev dans le cadre des problèmes inverses, on cherche à l'appliquer au contexte de la classification.
|
413 |
Décompositions géométriques des variétés de dimension 3Maillot, Sylvain 27 October 2008 (has links) (PDF)
On présente quelques résultats concernant l'existence ou l'inexistence de décompositions géométriques sur les variétés de dimension 3, compactes ou non.
|
414 |
Interpolation dans les algèbres de HörmanderOunaïes, Myriam 20 November 2008 (has links) (PDF)
Nous traitons des problèmes d'interpolation dans les espaces ${\mathcal A}_p(\C)$ des fonctions entières telles que $\sup_{z\in \C}\vert f(z)\vert e^{-Bp(z)}<\infty$, où $p$ est une fonction poids et $B$ est une constante positive qui peut varier. Ces espaces sont des algèbres, qu'on appelle algèbres de Hörmander. Le problème peut être formulé de la manière suivante : étant donnée une suite discrète de nombres complexes $\{\alpha_j\}$ et une suite de valeurs complexes $\{w_j\}$ vérifiant $\sup_j\vert w_j\vert e^{-B'p(\alpha_j)}<\infty$ avec une certaine constante $B'>0$, à quelles conditions existe-t-il une fonction $f\in {\mathcal A}_p(\C)$ telle que, pour tout $j$,$f(\alpha_j)=w_j $?Ce problème a été motivé par ses applications à l'analyse harmonique et particulièrement aux équations de convolution. Nous explorons cet aspect en appliquant certains de nos résultats sur l'interpolation aux fonctions moyenne-périodiques. Nous nous intéressons également à la question de l'interpolation en plusieurs variables complexes.
|
415 |
Approximations höldériennes de fonctions entre espaces d'Orlicz. Modules asymptotiques uniformes.Delpech, Sylvain 27 June 2005 (has links) (PDF)
Le cadre général de ce cette thèse est l'analyse non linéaire dans les espaces de Banach réels associée à la géométrie de ces espaces. Ce travail est composé de deux parties. Dans la première partie on s'intéresse principalement aux applications uniformément continues entre espaces de Banach de dimension infinie et à des résultats d'approximation et d'extension de telles applications. La seconde partie aborde la structure asymptotique des espaces de Banach de dimension infinie puis certaines propriétés de régularité des polynômes entre ces espaces en liaison avec cette structure.
|
416 |
Concordance des noeudsBlanloeil, Vincent 10 June 2003 (has links) (PDF)
HDR
|
417 |
Sur la topologie et la géométrie différentielle de variétés de Kahler de dimension complexe troisRasdeaconu, Rares 10 May 2005 (has links) (PDF)
In the first part of my thesis we provide infinitely many examples of pairs of diffeomorphic, non simply connected Kahler manifolds of complex dimension 3 with different Kodaira dimensions. Also, in any allowed Kodaira dimension we find infinitely many pairs of non deformation equivalent, diffeomorphic Kahler threefolds. In the second part we study the existence of Kahler metrics of positive total scalar curvature on 3-folds of negative Kodaira dimension. We give a positive answer for rationally connected threefolds. The proof relies on the Mori theory of minimal models, the weak factorization theorem and on a specialization technique.
|
418 |
Méthode de Galerkin discontinue pour un modèle stratigraphiqueTaakili, Abdelaziz 02 July 2008 (has links) (PDF)
Dans cette thèse, nous nous intéressons à un problème mathématique issu de la modélisation de taux d'érosion maximale dans la stratigraphie géologique. Une contrainte globale sur $\partial_t u$, la dérivée par rapport au temps de la solution, est la principale caractéristique de ce modèle. Ce qui nous amène à considérer une équation non linéaire pseudo-parabolique avec un coefficient de diffusion qui est une fonction non-linéaire de $\partial_t u$. En outre, le problème dégénère de telle sorte de tenir compte implicitement de la contrainte. Nous présentons un résultat de l'existence d'une solution au problème continu. Ensuite, une méthode DgFem (discontinuous Galerkin finite element method) pour son approximation numérique est développée. Notre objectif est d'utiliser les propriétéess d'approximation constante par morceaux pour tenir compte implicitement de la contrainte.
|
419 |
Restauration des images naturelles et préservation de la texture à l'aide de noyaux de taille normaleAzzabou, Noura 31 March 2008 (has links) (PDF)
Cette thèse s'intéresse aux problèmes de restauration d'images et de préservation de textures. Cette tache nécessite un modèle image qui permet de caractériser le signal qu'on doit obtenir. Un tel model s'appuie sur la définition de l'interaction entre les pixels et qui est caractérisé par deux aspects : (i) la similarité photométrique entre les pixels (ii) la distance spatiale entre les pixels qui peut être comparée à une grandeur d'échelle. La première partie de la thèse introduit un nouveau modèle non paramétrique d'image. Ce modèle permet d'obtenir une description adaptative de l'image en utilisant des noyaux de taille variable obtenue `a partir d'une étape de classification effectuée au préalable. La deuxième partie introduit une autre approche pour décrire la dépendance entre pixels d'un point de vue géométrique. Ceci est effectué `a l'aide d'un modèle statistique de la co-occurrence entre les observations de point de vue géométrique. La dernière partie est une nouvelle technique de sélection automatique (pour chaque pixel) de la taille des noyaux utilisé au cours du filtrage. Cette thèse est conclue avec l'application de cette dernière approche dans différents contextes de filtrage ce qui montre sa flexibilité vis-à-vis des contraintes liées aux divers problèmes traités.
|
420 |
Sur l'implosion parabolique, la taille des disques de Siegel et une conjecture de Marmi, Moussa et YoccozChéritat, Arnaud 23 May 2008 (has links) (PDF)
Tout le contenu de ce mémoire est un travail en commun de l'auteur et de Xavier Buff.<br /><br />Pour theta nombre de Brjuno, soit r(theta) le rayon conforme du disque de Siegel de P_theta(z)=exp(i.2.pi.theta)z+z^2 et Phi(theta) la variante due à Yoccoz de la somme de Brjuno. Soit Upsilon(theta) = log r(theta) + Phi(theta). <br />Nous avons démontré précédemment que Upsilon possède un prolongement continu à R, et donné une formule explicite pour sa valeur aux rationnels.<br /><br />La conjecture de Marmi-Moussa-Yoccoz, toujours ouverte, est que la fonction Upsilon est 1/2-Höldérienne.<br /><br />Nous démontrons ici que l'exposant ne peut être amélioré : quel que soit l'intervalle I non vide, Upsilon n'est delta-Höldérienne sur I pour aucun delta>1/2. Sa variation sur I est également non bornée.<br />La preuve est basée sur un développement asymptotique en tout p/q de Upsilon(x_n) pour certaines suites de rationnels x_n tendant vers p/q.<br />L'étude d'un point parabolique et de ses perturbations se fait parfois par l'introduction d'un champ de vecteurs auquel la dynamique est comparée.<br />Nous introduisons un champ de vecteurs particulier qui permet d'une part de donner des estimations suffisamment fines pour effectuer le développement asymptotique de Upsilon(x_n) ; d'autre part de proposer une normalisation intéressante des coordonnées de Fatou d'un point parabolique, dont nous donnons quelques propriétés de base.<br />J'ai apporté un soin particulier à la rédaction de l'implosion parabolique, qu'il a fallu raffiner légèrement et adapter à notre champs de vecteurs.
|
Page generated in 0.0801 seconds