• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 56
  • 11
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 225
  • 225
  • 102
  • 94
  • 34
  • 28
  • 26
  • 22
  • 21
  • 21
  • 20
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Regulatory Role Of Matrix Metalloproteinases In T Cell Activation

Benson, Heather Lynette 08 December 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Matrix metalloproteinases (MMPs) are known for their role in extracellular matrix remodeling, but their role in regulating intracellular immune cell function is unknown. We reported that MMP inhibition down regulated T cell proliferation in response to alloantigens and autoantigens; but the direct role of MMP involvement in T cell activation has not been reported. Methods: MMP deficient or MMP sufficient wild-type CD4+ or CD8+ T cells from C57BL/6 mice were treated with SB-3CT, a specific inhibitor of MMP2 and MMP9, stimulated with anti-CD3 Ab, alone, or with IL-2 or CD28. Cellular activation and cytokine profiles were examined. A mouse model of antigen specific T cell mediated lung injury was used to examine MMP inhibition in antigen-specific T cell mediated lung injury. Results: SB-3CT (1-25μM) induced dose-dependent reductions in anti-CD3 Ab-induced proliferation (p<0.0001). Compared to wild-type, MMP9-/- CD4+ and CD8+ T cells proliferated 80-85% less (p<0.001) in response to anti-CD3 Ab. Compared to untreated or wild-type cells, anti-CD3 Ab-induced calcium flux was enhanced in SB-3CT-treated or MMP9-/- CD4+ and CD8+ T cells. Cytokine transcripts for IL-2, TNF-α and IFN-γ were reduced in both CD4+ and CD8+ MMP9-/- T cells, as well as in SB3CT treated CD4+ T cells. MMP inhibition dampened antigen-specific T cell mediated lung injury. Conclusions: Although known to be functional extracellularly, the current data suggest that MMPs function inside the cell to regulate intracellular signaling events involved in T cell activation. T cell targeted MMP inhibition may provide a novel approach of immune regulation in the treatment of T cell-mediated diseases. - David S. Wilkes, M.D., Chair.
42

Tools for Investigating Pericellular Matrix Metalloproteinase Activity and Applications in Drug Development

Zent, Joshua Michael 27 September 2022 (has links)
No description available.
43

The Role of Matrix Metalloproteinases (MMPs) and their Proteolytic Degradation of Chemokines in the Lung

Koloze, Mary T. 17 September 2010 (has links)
No description available.
44

Implication de la protéine Zonula Ocludens-2 (ZO-2) dans le processus d'invasion tumorale / Implication of Zonula Occludens-2 protein (ZO-2) in the tumor invasion process

Luczka, Emilie 30 September 2011 (has links)
Lors de l’invasion tumorale, les cellules épithéliales tumorales acquièrent des propriétésmigratoires et invasives impliquant des modifications phénotypiques importantes. Parmi ceschangements, on observe notamment une réorganisation ou une perte des complexes d’adhérenceintercellulaire et une acquisition de la capacité à dégrader la matrice extracellulaire à travers uneaugmentation d’expression des métalloprotéinases matricielles (MMPs). Dans cette étude, nous noussommes plus particulièrement intéressés aux jonctions serrées qui sont constituées de protéinestransmembranaires (occludine, claudines) liées au cytosquelette d’actine par des protéinescytoplasmiques sous-membranaires incluant les Zonula Occludens (ZO-1, -2 et -3). Parmi cesmolécules, nous avons évalué le rôle potentiel de ZO-2 dans l’acquisition de propriétés invasives parles cellules tumorales. In vivo, nous avons montré une diminution d’expression des ZOs dans lescancers broncho-pulmonaires avec une localisation cytoplasmique préférentielle. De plus, in vitro, lalocalisation des ZOs varie en fonction du potentiel invasif des cellules tumorales et leur réorganisationest corrélée à la migration cellulaire. Nous démontrons également que l’inhibition de ZO-2 augmenteles capacités invasives de cellules tumorales invasives et s’accompagne d’une augmentationd’expression des MMP-2 et -14 et du facteur de transcription ZEB-2. Ces résultats suggèrent que ZO-2, composant structural des complexes d’adhérence intercellulaire dans les cellules différenciées,pourrait jouer un rôle clé dans le processus d’invasion tumorale. Sa capacité à transiter de lamembrane au cytoplasme et/ou au noyau lui permettrait d’agir comme une molécule de signalisationen régulant la transcription de gènes. Les données obtenues démontrent un rôle anti-invasif de ZO-2. / During tumor invasion, tumor epithelial cells acquire migratory and invasive propertiesinvolving important phenotypic alterations. Among these changes, one can observe a reorganization ora loss of cell-cell adhesion complexes such as tight junctions and an increased ability to degradeextracellular matrix through an enhanced expression of matrix metalloproteinases (MMPs). Tightjunctions are composed of transmembrane proteins (occludin, claudins) linked to the actincytoskeleton through cytoplasmic adaptor molecules including those of the zonula occludens family(ZO-1, -2, -3). Among these molecules, we evaluated the potential role of ZO-2 in the acquisition ofinvasive properties by tumor cells. In vivo, we showed a decrease of ZOs expression in bronchopulmonarycancers with a preferential localization in the cytoplasm. In addition, in vitro, thelocalization of ZOs varies according to invasive properties of tumor cells and their reorganization iscorrelated with cell migration. We also demonstrate that ZO-2 inhibition increases invasive capacitiesof invasive tumor cells. This was associated with an increase of MMPs (MMP-2 and -14) and thetranscription factor ZEB-2 expression. These results suggest that ZO-2, known as a structuralcomponent of cell-cell adhesion complexes in differentiated epithelial cells, could play a key role intumor invasion through its ability to shuttle from the membrane to the cytosol or nucleus, and act assignaling molecule regulating gene transcription. This study shows an anti-invasive role of ZO-2.
45

The expression and regulation of membranetype matrix metalloproteinases (MT-MMPS) in prostate cancer

Palliyaguru, Tishila Sepali January 2005 (has links)
Prostate cancer (PCa) represents the most frequently diagnosed cancer and the second leading cause of cancer death in males. Initial development and progression of the disease is mainly regulated by androgens. However, the pathology of the disease may progress to a loss of hormone dependence, resulting in rapid growth and a metastatic phenotype. Invasion and metastasis of tumour cells results from the degradation of the basement membrane (BM) and extracellular matrix (ECM). The degradation of the BM and ECM is in part mediated by a family of proteinases called the matrix metalloproteinases (MMPs). Currently more than 20 members of the MMP family have been identified and they are further divided in to sub-classes according to their protein structure. Collectively, MMPs are capable of degrading essentially all ECM components. High expression of some MMPs correlates with a malignant phenotype of various tumours. This study focused on the expression and regulation of a sub-class of MMPs called the membrane-type MMPs (MT-MMPs) in PCa. To date 6 MT-MMPs have been identified and they are characterized by a transmembrane domain, followed by a short cytoplasmic tail (MT1-, MT2-, MT3- and MT5-MMPs) or a glycosylphosphatidylinositol (GPI) moiety (MT4- and MT6-MMPs). MT-MMPs are thought to play a key role in tumour cell invasion by virtue of their ability to activate MMP-2 (a secreted MMP, which is implicated in many metastatic tumours) and their direct degradation activity on ECM components. Elevated MT-MMP expression has been shown in breast, colon, skin, stomach, lung, pancreas and brain cancers. Until very recently there had been no studies conducted on MT-MMPs in PCa. The few studies preceding or occurring in parallel with this one, have mainly reported the mRNA expression of these enzymes in PCa. Most studies have focused on MT1-MMP. Thus, at the commencement of this project there were many unexplored aspects of the expression and regulation of the broader MT-MMP family in PCa. The aims of this study were to examine: 1 a) The expression of MT-MMPs in prostate cancer cell lines using RT-PCR and western blot analysis and b) expression of MT1-MMP and MT5-MMP in BPH (benign prostatic hyperplasia) and PCa clinical tissue sections by immunohistochemistry. 2) The regulation of MT1-MMP, MT3-MMP and MT5-MMP in PCa cell lines by Concanavalin A (Con A), phorbol-12-myristate 13-acetate (PMA), dihydrotestosterone (DHT) and insulin-like growth factors I and II (IGF I and IGF II) using western blot analysis. In this study RWPE1, a transformed but non-tumorigenic prostate cell line was used as a "normal" prostate cell model, ALVA-41 and LNCaP as androgen-dependent PCa cell models and DU-145 and PC-3 as androgen-independent PCa cell models. The mRNA expression for the 6 MT-MMPs was determined by RT-PCR. The results indicate that MT1- and MT3-MMP were detected in all cell lines. This is the first study to report MT1-MMP mRNA expression in LNCaP cells and MT3-MMP mRNA in DU-145 cells. MT2-MMP mRNA was detected in only LNCaP and DU-145 cells, whilst MT5-MMP was detected in PC-3, DU-145 and LNCaP cells. nterestingly, MT2-, MT4-, MT5- or MT6-MMP mRNA expression was not detected in the "normal" cell line RWPE1, perhaps indicating an induction in gene transcription in tumour cells. MT4-MMP mRNA was only detected in the androgen-independent cell lines, indicating a potential role in the invasion and metastasis processes of the aggressive androgen-independent PCa. In this study, very low expression of MT6-MMP was detected only in LNCaP and DU-145 cells. Previously there had been no reports on the expression of MT6-MMP in the normal or cancerous prostate. Due to the mRNA of MT1-, MT3- and MT5-MMPs being the predominant MT-MMPs expressed in the current study, and the availability of suitable antibodies against them, the protein expression of these three MT-MMPs was studied by western blot analysis. MT1-, MT3- and MT5-MMP protein expression was detected in the cell lysates and conditioned medium (CM) of RWPE1, LNCaP and PC-3 cells. For each MT-MMP, various protein species were detected including putative proforms, mature (active) forms, processed or fragmented forms as well as soluble or shed forms. The presence of soluble or shed forms of MT-MMPs in the CM of cultures of "normal" and PCa cells could imply one of the following mechanisms: ectodomain shedding by either extracellular sheddases, the secretion of intracellular processed proteins without the transmembrane domain, the release of membrane vesicles containing membrane-bound enzymes, or the presence of alternatively spliced mRNA, which gives rise to MT-MMPs without a transmembrane domain. Further characterization of these various forms, including their amino acid sequence, is required to fully elucidate their structural composition. Despite the detection of the mRNA, we did not detect the cell-associated proteins of MT1-MMP and MT5-MMP and only very low expression of MT3-MMP in DU-145 cells (CM of DU-145 cells were not screened for soluble forms of the enzymes). This is the first study to report MT5-MMP expression at the protein level in prostate derived cell lines. Immunohistochemistry was carried out on benign prostatic hyperplasia (BPH) and PCa clinical tissues using MT1- and MT5-MMP antibodies to determine their cellular localisation in benign and cancer glands. MT1- and MT5-MMPs were expressed in BPH and moderate and high grade PCa. MT1-MMP expression was highest in moderate grade cancer compared to BPH and high grade cancer. MT1-MMP expression was predominantly observed in the cytoplasm of secretory epithelial cells of both benign and cancer glands, although in cancer glands, some nuclear staining was also observed. Stromal expression of MT1-MMP was only observed in high grade cancer. This study is the first to report the immunolocalization of MT5-MMP outside the brain and in kidneys of diabetic patients. MT5-MMP was predominantly expressed in the cytoplasm of the secretory cells in benign glands. In the cancer glands, staining was heterogeneous with low to intense staining, mainly in the nuclei, plasma membrane and cytoplasm of secretory epithelial cells. Stromal expression of MT5-MMP was only observed in cancer tissues, particularly in high grade cancer. To study the regulation of MT-MMPs in PCa, we treated LNCaP and PC-3 cells, with either Con A, PMA, DHT or IGF-I and -II and studied the protein expression of MT1-, MT3- and MT5-MMPs by western blot analysis. Con A and PMA have been shown to stimulate MMP expression in other cell systems. Con A treatment showed a general increase in the protein expression of MT1-, MT3- and MT5-MMPs. By far the greatest induction by Con A observed was the nearly 4 fold increase in MT5-MMP expression caused by 40μg/mL Con A treatment of PC-3 cells. PMA treatment of LNCaP and PC-3 cells appeared to increase shedding or secretion of all three MT-MMPs in to the CM. This increase in the soluble forms corresponded to a decrease in cell-associated forms in LNCaP cells. Treatment of LNCaP with DHT alone and treatment of LNCaP and PC-3 cells with IGF-I and -II alone failed to detect any change in expression of MT1-MMP. The information gathered in this study on MT-MMPs with respect to cellular localization, expression levels and regulation by growth factors or chemicals that mimic their actions, will aid in our understanding of the role of MT-MMPs in PCa. This study provides strong preliminary data for further research, particularly with respect to functional studies of MT-MMPs in PCa. Understanding the processes which govern the actions of such proteins as these will provide potential insights into development of new management and therapeutic regimens to prevent cancer progression.
46

MOLECULAR MECHANISMS OF THROMBOXANE A2 RECEPTOR-MEDIATED INVASION IN LUNG CANCER CELLS

Li, Xiuling 01 January 2012 (has links)
Thromboxane A2 receptor (TP) has been shown to play important roles in multiple aspects of cancer development including regulation of tumor growth, survival and metastasis. Molecular mechanisms of TP mediated cancer cell invasion remain to be identified. TP agonist, I-BOP, significantly elevated several matrix metalloproteinases (MMPs) including MMP-1, MMP-3, MMP-9 and MMP-10 in A549 human lung adenocarcinoma cells overexpressing TPα (A549-TPα) or TPβ (A549-TPβ). Signaling pathways of I-BOP-induced MMP-1 expression were examined in further detail as a model system for MMPs induction. Signaling molecules involved in I-BOP-induced MMP-1 expression were identified by using specific inhibitors including small interfering (si)-RNAs of signaling molecules and promoter reporter assay. The results indicate that I-BOP-induced MMP-1 expression is mediated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)-activator protein-1(AP-1) and ERK-CCAAT/enhancer-binding protein β (C/EBPβ) pathways. I-BOP-induced cellular invasiveness of A549-TPα cells was blocked by, GM6001, a general inhibitor of MMPs. Knockdown of MMP-1 and MMP-9 by their respective siRNA partially reduced I-BOP-stimulated A549-TPα cells invasion suggesting that other MMPs induced by I-BOP were also involved. Furthermore, secreted MMP-1 in conditioned media from I-BOP-treated A549-TPα cells (CM-I-BOP) autocrinely induced monocyte chemoattractant protein-1 (MCP-1) expression. The induction of MCP-1 by MMP-1 in A549 cells was via activation of protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1. This conclusion was reached from the following findings: (1) expression of MCP-1 induced by trypsin, a PAR2 agonist, was inhibited by a PAR2 antagonist. (2) expression of MCP-1 induced by MMP-1 and by CM-I-BOP was blocked by a PAR2 antagonist but not by other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM-I-BOP was attenuated significantly by pretreatment of cells with PAR2-siRNA. Finally, MCP-1 also can be induced by direct activation of TP in a SP1 involved mechanism. CM-I-BOP enhanced MCP-1-dependent migration of RAW 264.7 macrophages. Co-culture of A549 cells with RAW 264.7 macrophages induced expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in A549 cells. My studies provide molecular mechanisms by which TP-mediated cancer cell invasion and suggest that TP is a potential anti-cancer drug target.
47

Transcription Factor Decoy Oligonucleotides That Mimic Functional Single Nucleotide Polymorphisms (SNPS) for the Treatment of Glioblastomas

Rege, Jessicca I Martin 01 January 2005 (has links)
Introduction: Despite many advances in therapeutic and surgical techniques for glioblastoma multiforme (GBM), this form of brain cancer still remains incurable. A hallmark feature of GBM is the ability of the glioma cells to infiltrate surrounding brain tissue. The invasive nature of glioma cells is a key challenge in considering treatment for patients with GBM. Certain members of the matrix metalloproteinase (MMP) family play a role in tumor cell invasion and metastasis (Coussens, et al., 2002). A functional SNP resulting from an additional guanine at position -1607 in the MMP-1 promoter creates an erythroblastosis twenty six transcription factor protein (ETS) DNA consensus binding site, which results in significantly higher transcriptional activity of MMP-1 (Rutter et al., 1998). Several published studies show the incidence of this 2G allele is significantly higher in aggressive and metastatic tumors. Binding of an adjacent transcription factor DNA consensus site, activator protein -1 (AP1) site at -1607 has been shown to cooperate with ETS binding to activate transcription of the MMP-1 gene. We have reported a significant increase in the 2G/2G MMP-1 genotype in glioblastomas (pPurpose: To determine if a novel SNP decoy can inhibit the 2G genotype-dependent increase in MMP-1 transcriptional activity, three specific aims were tested: one, to verify specificity of binding of a transcription factor decoy designed to mimic the -1607 SNP site within the MMP-1 promoter; two, to determine the effect of transcription factor decoy ODN on transcriptional activity of an MMP-1 promoter containing the 2G SNP at -1607; and three, to assess the effect of the transcription factor decoy ODN on MMP-1 mRNA and protein expression in treated glioma cells. Methods: Modified and unmodified decoys were designed to mimic position -1607 to -1593 of the MMP-1 promoter. The SNP decoy contains both ETS and AP1 DNA consensus sites and MMP-1 flanking sequences. We first determined optimal binding conditions with electromobility shift assays (EMSAs). The EMSA assays were used to determine the presence of Ets-1 and AP1 DNA binding activity within the glioma cell lines, T98 and U87. EMSAs were also used to determine if these transcription factors could bind to the MMP-1 promoters with and without the SNP. Lastly, EMSAs were done to determine the binding characteristics of the two modified SNP decoys (LNA-locked nucleic acid, and a PS-phosphothioate modification). The effect of the decoy on MMP-1 transcriptional activity was assessed using a Dual-Luciferase Reporter Assay. The effect of the SNP decoys on mRNA was assessed using quantitative RT-PCR, and on protein expression using a sandwich enzyme-linked immunoassay (ELISAs). Statistical analysis was done using a two-way ANOVA to evaluate the effect of the decoy on MMP-1 transcriptional activity, and protein expression. Results: EMSA results indicate that Ets-1 and AP1 probes, and MMP-1 promoter probes effectively bind proteins from glioma cell nuclear extracts. Addition of excess decoy was able to inhibit protein interactions with the 2G MMP-1 promoter probe and to a lesser extent the 1G promoter probe. The scrambled decoy had no effect. Promoter studies showed a significant increase in transcriptional activity of the 2G promoter and addition of 5 mm PS-SNP decoy could effectively prevent the increase in activity (pConclusions: U87 and T98 cell lines contain DNA binding activity of the transcription factors of interest, namely ETS-1 and AP1. The candidate transcription factors can bind to the MMP-1 promoter in the presence or absence of the 2G. Both the LNA and PS-SNP modified decoys can inhibit nuclear proteins from binding to the MMP-1 2G promoter. The PS-SNP decoy was able to inhibit MMP-1 (2G) gene transcription in a dose dependent manner, whereas the control decoy showed a consistent non-specific effect. The PS-SNP decoy inhibited MMP-1 mRNA and protein expression in glioma cells containing the 2G genotype, and to lesser extent in glioma cells containing the 1G genotype. The results presented here support the conclusion that the chimeric SNP decoy can selectively inhibit the MMP-1 promoter containing the 2G genotype.
48

Development of novel strategies for detection and treatment of cancer

Samarakoon, Thilani Nishanthika January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Stefan H. Bossmann / Cancer is one of the leading causes of death in the world. Billions of dollars are spent to treat cancer every year. This clearly shows the need for developing improved treatment techniques that are affordable to every person. Early diagnosis and imaging of tumors is equally important for the battle against this disease. This dissertation will discuss new approaches for discovering and developing novel detection and treatment techniques for cancer using organic ligands, and Fe/Fe3O4 core/shell magnetic nanoparticles. A series of o-phenylenediamine derivatives with nitro-, methyl- and chloro- substituents were synthesized and studied their ability to act as anticancer agents by using steady-state, UV/Vis-, and fluorescence spectroscopy. In the absence of zinc(II), intercalation with DNA is the most probable mode of interaction. Upon addition of zinc(II), DNA-surface binding of the supramolecular aggregates was observed. The interaction of the supramolecular (-ligand-Zn2+-)n aggregates with MDA 231 breast cancer cells led to significant cell death in the presence of UVA at λ=313 nm displaying their potential as anticancer agents. Bimagnetic Fe/Fe3O4 core/shell nanoparticles (MNPs) were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected by dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin), a fluorescent dye, was attached to the dopamine-oligoethylene glycol ligands. These modified nanoparticles have the ability to selectively accumulate within the cancerous cells. They are suitable candidates for local hyperthermia treatment. We have observed a temperature increase of 11 ºC in live mice when subcutaneously injecting the MNPs at the cancer site and applying an alternating magnetic field The system is also suitable for Magnetic Resonance Imaging (MRI), which is a diagnostic tool to obtain images of the tumors. Our superparamagnetic iron oxide nanoparticles have the ability to function as T1 weighted imaging agents or positive contrasting agents. We were able to image tumors in mice using MRI. Various proteases are over-expressed by numerous cancer cell lines and, therefore, of diagnostic value. Our diagnostic nanoplatforms, designed for the measurement of protease activities in various body fluids (blood, saliva, and urine), comprise Fe/Fe3O4 core/shell nanoparticles featuring consensus sequences, which are specific for the target protease. Linked to the consensus sequence is a fluorescent organic dye (e.g. TCPP). Cleavage of the sequence by the target protease can be detected as a significant increase in fluorescence occurring from TCPP. We were able to correlate our diagnostic results with cancer prognosis.
49

Mecanismos envolvidos no remodelamento vascular promovido pelo tratamento com omeprazol / Mechanisms involved in vascular remodeling promoted by treatment with omeprazole

Nogueira, Renato Corrêa 28 March 2019 (has links)
Existe uma relação entre o uso abrangente de inibidores da bomba de prótons (IBPs), como o omeprazol, e o aumento de risco cardiovascular. Essa relação está associada ao efeito dos IBPs de interferir na síntese e biodisponibilidade do óxido nítrico (NO), um fator importante na homeostase vascular. Também foi evidenciado que o omeprazol causa disfunção endotelial junto a um desequilíbrio redox em aortas, mediado pela ativação da enzima xantina oxidoredutase (XOR), responsável pelo catabolismo das purinas e geração de espécies reativas de oxigênio (ERO). As ERO decorrentes da atividade da XOR, podem aumentar a expressão e a atividade de metaloproteinases de matriz (MMPs), principalmente a MMP-2, que são promotoras de remodelamento tecidual. Assim, nosso objetivo foi analisar se o omeprazol causa remodelamento vascular em aorta de ratos, frente ao seu efeito de aumento do estresse oxidativo via XOR promovendo ativação de MMPs. Foram utilizados ratos wistar com peso entre 180-200 g (n=40), separados em 4 grupos de tratamento onde cada animal foi tratado com 0,5 mL de solução das drogas nas seguintes especificações: o grupo Controle (C) foi tratado com solução veículo tween 2% (vol./vol.) 1 vez ao dia por gavagem, o grupo Alopurinol (A) recebeu uma solução deste inibidor de XOR por gavagem (50 mg/kg/dia), o grupo Omeprazol (O) que recebeu uma solução de omeprazol diluída em tween 2% por via intraperitoneal (10 mg/kg/dia) e por fim, o grupo Omeprazol+Alopurinol (O+A) que recebeu as duas drogas concomitantemente. O protocolo experimental durou 4 semanas, durante as quais foram realizadas aferições da pressão arterial sistólica por pletismografia de cauda. Ao fim do tratamento, os animais foram submetidos à eutanásia, onde foi aferido o pH do lavado gástrico e foi coletada a aorta torácica para a análise de reatividade vascular, análise bioquímica de ERO, a análise morfométrica, e ensaio de atividade de MMPs. Não houve variação de pressão arterial em nenhum dos grupos. O tratamento com alopurinol não alterou nenhum dos parâmetros analisados em relação ao grupo controle neste estudo. O pH gástrico aumentou nos grupos tratados com omeprazol. Na reatividade vascular, observamos que o omeprazol diminuiu o efeito máximo da resposta vasodilatadora dos anéis de aorta à acetilcolina, mas que o tratamento associado ao alopurinol (O+A) preveniu essa diminuição. Em relação ao pD2, foi constatado que o tratamento com omeprazol resulta na diminuição da potência da acetilcolina em causar relaxamento vascular, e que a associação do tratamento com alopurinol, não foi capaz de prevenir essa diminuição. O grupo O também apresentou aumento de espécies reativas de oxigênio no leito vascular, observados no ensaio DHE e o tratamento com alopurinol preveniu este efeito. No ensaio de atividade gelatinolítica in situ observamos um aumento da atividade de MMPs no grupo O, e o tratamento com alopurinol também preveniu esse efeito. Na análise morfométrica observamos que o grupo O apresentou aumento dos parâmetros de remodelamento vascular, denotando um remodelamento hipertrófico, que foi prevenido pela associação com alopurinol. Com base nos resultados, é possível concluir que o tratamento com omeprazol causou remodelamento em aortas de ratos, e que esse efeito ocorreu paralelamente a outros prejuízos, como a diminuição da função vascular avaliada pela resposta à acetilcolina, aumento de espécies reativas de oxigênio e aumento de atividade de MMPs. Como todos esses efeitos resultantes do uso do omeprazol foram prevenidos pela associação do tratamento com alopurinol, é viável inferir que a XOR participe da via pela qual o omeprazol causa efeitos deletérios sobre a vasculatura / There is a relationship between the use of proton pump inhibitors (PPIs), such as omeprazole, and the increase of cardiovascular risk. This relation is associated with the effect of PPIs on nitric oxide synthesis and bioavailability, which is an important factor to vascular homeostasis. It also clear that omeprazole causes endothelial dysfunction by mechanisms involving xanthine oxidoreductase (XOR) mediated redox imbalance in aortas, which is responsible for purines catabolism, and generates reactive oxygen species (ROS). ROS derived from XOR activity, may increase matrix metalloproteinases expression and activity, mainly MMP-2 that are promoters of tissue remodeling. Thus, our aim was to analyze if omeprazole entails vascular remodeling in rat\'s aorta, with its effect of causing oxidative stress via XOR, promoting MMPs activation. Male rats weighing between 180-200g (n=40) were assigned to 4 groups with different treatments, where each animal was treated with 0.5 mL of drug solution, following the specification per group: Control group (C) was treated with the vehicle tween 2% (vol./vol.) 1 time a day by gavage; Allopurinol group (A) that received a solution of this XOR inhibitor by gavage (50mg/kg/day), Omeprazole group (O) which was treated by intraperitoneal route with a solution of omeprazole diluted at tween 2% (10 mg/kg/day) and at last, the Omeprazole+Allopurinol group (O+A), that received both drugs concomitantly. The experimental protocol lasted 4 weeks, during which, were performed systolic blood pressure measurements by tail cuff plethysmography. By the end of treatments, the animals were submitted to euthanasia, then the pH of the gastric washing was measured, and the thoracic aorta was collected to study vascular reactivity, biochemical analysis of ROS, morphometric analysis and MMPs activity assay. There was no blood pressure variation in any of the treatment groups. Treatment with allopurinol did not alter any of the parameters that were analyzed in the present study, in comparison to control group. Gastric washing pH increased in groups treated with omeprazole. In vascular reactivity, it was noticed that omeprazole decreased the maximum effect of the aortic ring\'s vasodilator response to acetylcholine, while the omeprazole treatment associated with allopurinol (O+A) prevented this decrease. Regarding to pD2, it was observed that omeprazole treatment results in decreased acetylcholine potency to cause vascular relaxation, and the association to allopurinol treatment was not capable of preventing this decrease. The O group also presented increased reactive oxygen species levels in the vascular bed, according to DHE assay, and the treatment with allopurinol prevented this effect. With respect to in situ gelatinolytic activity assay, we noticed an increase in MMPs activity in the O group, and the treatment with allopurinol prevented that. The morphometric analysis showed the O group with increased vascular remodeling parameters, denoting a hypertrophic remodeling, which was prevented by the association with allopurinol. Based on these results, is possible to conclude that the treatment with omeprazole caused aortic remodeling in rats, and combined to this effect, some other were observed, such as the vascular function impairment evaluated by the response to acetylcholine, the increase of ROS and increase in MMPs activity. As the effects of omeprazole treatment were prevented by the association of treatment with allopurinol, it is reasonable to infer that XOR participates of the pathway by which omeprazole exerts its deleterious effects on the vasculature
50

Análise do padrão de expressão de MMP-2, -9 e -8 em tecido humano pulpar normal e inflamado / Analysis of the expression perfile of MMP-2, -9 and -8 in normal and inflamed human pulp tissue

Mattos, Maria Cecília Ribeiro de 19 October 2009 (has links)
As metaloproteinases da matriz (MMPs) foram relacionadas a diversas doenças inflamatórias como artrite e também ao câncer. O presente trabalho tem por objetivo estabelecer o papel da MMP-2, MMP-9 e MMP-8 no processo de inflamação pulpar. Foram adotadas as seguintes hipóteses nulas: (1) o padrão de expressão das MMP-2, MMP-9 e MMP-8 não sofre alteração nos diferentes estágios da polpa humana: normal, reversível, transição, irreversível ou necrose; (2) não há diferença de expressão das MMP-2, -9 e MMP-8, considerando-se um mesmo estágio de inflamação tecidual pulpar. Os métodos utilizados foram: (I) Obtenção dos espécimes, que foram divididos em grupos de acordo com critérios adotados de semiologia subjetiva e objetiva. Obtiveram-se os seguintes grupos: GI (Controle) dentes hígidos (n=7); GII (Pulpite Reversível n=4); GIII (Pulpite Transição n=4); GIV (Pulpite Irreversível/Necrose n=8). Logo após exodontia, os dentes obtidos foram cortados ligeiramente abaixo da junção amelodentinária e fixados em formol a 10% por 48h. Foram lavados em água corrente (24h) para então serem processados histologicamente. Foram obtidas secções de 4m, aderidas em lâminas silanizadas e submetidas à imunomarcação (Técnica da Peroxidase), utilizando os anticorpos anti MMP-2, MMP-9 e MMP-8 humanos. A presença de imunomarcação foi realizada através da análise semi-quantitativa por escores, sendo que a quantificação de marcação por corte seguiu o seguinte escore: 0= ausente; 1= leve; 2= moderada; 3= intensa. Realizou-se teste estatístico não paramétrico Kruskal-Wallis, p<0,05. As comparações intergrupos revelaram, para CO: (1)MMP-2 - GI=GII=GIII, GIII=GIV, GI>GIV (p<0,01) e GII>GIV (p<0,05); (2)MMP-9 GI=GII=GIV, GII=GIII e GIII>GI (p<0,01); (3)MMP-8 GI=GII=GIII=GIV. Na região central da polpa, obteve-se: (1)MMP-2 GI=GII=GIII, GIII=GIV, GI>GIV (p<0,001) e GII>GIV (p<0,01); (2)MMP-9 GI=GII=GIII, GIII=GIV, GIV>GI (p<0,001) e GIV>GII (p<0,01); (3)MMP-8 GI=GII, GIII=GIV, GIII>GI (p<0,05), GIV>GI (p<0,01), GIII>GII (p<0,05) e GIV>GII (p<0,05). Quanto às comparações intragrupos, na CO mostraram: (1)GI - MMP-2>MMP9 (p<0,001), MMP-2=MMP-8 e MMP-9=MMP-8; (2)GII MMP-2>MMP-9 (p<0,01); MMP-2=MMP-8 e MMP-9=MMP-8; (3)GIII e GIV MMP-2=MMP-9=MMP-8. Para a região mais central da polpa: (1)GI e GII MMP-2=MMP-9=MMP-8; (2)GIII MMP9>MMP-2 (p<0,05), MMP- 2=MMP-8 e MMP-9=MMP-8; (3)GIV MMP-9>MMP-2 (p<0,01), MMP-2=MMP-8 e MMP-9=MMP-8. Sendo assim, as duas hipóstese nulas foram rejeitadas. Conclui-se ainda que MMP-2, MMP-9 e MMP-8 atuam no processo de inflamação pulpar de maneira distinta na CO e polpa central; MMP-2 é mais expressa em polpa sadia; a maior expressão de MMP-9 relaciona-se à presença de inflamação pulpar; em polpas inflamadas, a expressão de MMP- 8 é maior quando comparadas a polpas normal, embora tal enzima seja também levemente expressada em tecido pulpar normal. / The matrix metalloproteinases (MMPs) have been related to various inflammatory diseases, such as arthritis, as well as to cancer. The aim of the present study was to establish the role of MMP-2, MMP-9 and MMP-8 in the process of dental pulp inflammation. The following null hypotheses were adopted: (1) the pattern of MMP-2, MMP-9 and MMP-8 expression does not undergo alteration in the following different stages of human pulp: normal, reversible, transition, irreversible or necrosis; (2) there is no difference in the expression of MMP-2, -9 and MMP-8, when considering the same stage of pulp tissue inflammation. The methods used were: (I) Obtainment of specimens, which were divided into groups according to the subjective and objective criteria of semiology adopted. The following groups were obtained: GI (Control) healthy teeth (n=7); GII (Reversible Pulpitis n=4); GIII (Transition Pulpitis n=4); GIV (Irreversible Pulpitis/Necrosis n=8). Soon after extraction the teeth obtained were cut slightly below the amelodentinal junction and fixed in 10% formol for 48h. They were washed under running water (24h) and were histologically processed afterwards. Sections of 4m were obtained, adhered to silanized slides, and submitted to immunomarking (Peroxidase Technique), using human anti MMP-2, MMP-9 and MMP- 8 antibodies. The presence of immunomarking was determined through semi-quantitative analysis by scores, and marking by cut was quantified using the following score: 0= absent; 1= slight; 2= moderate; 3= intense. The Kruskal-Wallis non-parametric statistical test was performed, p<0.05. Intergroup comparisons revealed the following: for CO: (1)MMP-2 - GI=GII=GIII, GIII=GIV, GI>GIV (p<0.01) and GII>GIV (p<0.05); (2)MMP-9 GI=GII=GIV, GII=GIII and GIII>GI (p<0,01); (3)MMP-8 GI=GII=GIII=GIV. In the central region of the pulp, the following results were obtained: (1)MMP-2 GI=GII=GIII, GIII=GIV, GI>GIV (p<0.001) and GII>GIV (p<0.01); (2)MMP-9 GI=GII=GIII, GIII=GIV, GIV>GI (p<0.001) and GIV>GII (p<0.01); (3)MMP-8 GI=GII, GIII=GIV, GIII>GI (p<0.05), GIV>GI (p<0.01), GIII>GII (p<0.05) and GIV>GII (p<0.05). With regard to intragroup comparisons, in CO the following were shown: (1)GI - MMP-2>MMP9 (p<0.001), MMP-2=MMP-8 and MMP-9=MMP-8; (2)GII MMP-2>MMP-9 (p<0.01); MMP-2=MMP-8 and MMP-9=MMP-8; (3)GIII and GIV MMP- 2=MMP-9=MMP-8. For the most central region of the pulp: (1)GI and GII MMP-2=MMP- 9=MMP-8; (2)GIII MMP9>MMP-2 (p<0.05), MMP-2=MMP-8 and MMP-9=MMP-8; (3)GIV MMP-9>MMP-2 (p<0.01), MMP-2=MMP-8 and MMP-9=MMP-8. Therefore, the two null hypotheses were rejected. Moreover, it was concluded that MMP-2, MMP-9 and MMP-8 act in the process of pulp inflammation in a distinct manner in CO and central pulp; more MMP-2 is expressed in healthy pulp; the highest expression of MMP-9 is related to the presence of pulp inflammation; in inflamed pulp, the expression of MMP-8 is higher when compared with that of normal pulp, although this enzyme is also slightly expressed in normal pulp tissue.

Page generated in 0.1163 seconds